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Abstract

Akey challenge in complex design problems that permeate science and engineering is the need to
balance design objectives for specific design elements or subsystems with global system objectives.
Global objectives give rise to competing design pressures, whose effects can be difficult to trace in
subsystem design. Here, using examples from arrangement problems, we show that the systems-level
application of statistical physics principles, which we term ‘systems physics’, provides a detailed
characterization of subsystem design in terms of the concepts of stress and strain from materials
physics. We analyze instances of routing problems in naval architectures, and show that systems
physics provides a direct means of classifying architecture types, and quantifying trade-offs between
subsystem- and overall performance. Our approach generalizes straightforwardly to design problems
in a wide range of other disciplines that require concrete understanding of how the pressure to meet
overall design objectives drives the outcomes for component subsystems.

1. Introduction

Designing products with an emergent, overall function that is more than the sum of their parts is a crucial
challenge in science and engineering [ 1]. Meeting this challenge is complicated by the fact that, for many
complex products, [2—6] different subsystems employ diverse technologies and are designed using a variety of
methodologies. Moreover, meeting the overall design goal for a specific product is seldom achieved by optimal
performance for every individual subsystem [7]. The need to design subsystems that achieve target performance
and contribute to overall system outcomes is becoming more pressing [8, 9]. The increased pressure arises
because engineered products in a wide variety of industries now incorporate several distinct, but interconnected
types of functionality [8]. As a result, for many modern engineered products more economic value is added in
designing a product than in manufacturing it [9]. Making design more effective requires the ability to
understand and quantify how the design of a subsystem is affected by overall design objectives, and how
deviations from optimal performance are affected by interaction with other subsystems.

Here, we use techniques from information theory and statistical mechanics to show that subsystem
performance and interactions can be cast in terms of ‘stress” and ‘strain’ from materials physics. We illustrate this
behavior in design problems that can be cast as arrangement problems. Arrangement problems arise in design in
awide range of disciplines, including at several scales in electronics, [ 10] as well as in distribution logistics [11]
and facility layout [12]. Here, we focus on arrangement problems that arise in naval architecture [13, 14]. Naval
architecture, specifically that of warships or other multi-use vessels, provides an ideal case for understanding the
role of subsystem behavior in complex engineering design. Ships incorporate several competing design
pressures, [5, 15] they require design specifications at several levels of detail, [ 16] and costs frequently prevent
prototype production [17]. Additionally, ship design has a need for design freedom, i.e. it requires the
consideration of nearly-redundant designs of comparable ‘cost’ of the overall design objective. This type of
design cannot be done via approaches that focus on finding individual designs, e.g. simulated annealing [18],
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Figure 1. Schematic of the relationship between global design pressure and local design stress in a generic design problem. A complex
system (whole network) is divided into three subsystems (represented by green, red, and blue nodes). Design pressure is represented
by the inward pointing grey arrows and applies to all parts of the system. Locally, the global design pressure manifests itself as design
stress, here between two blue nodes. If design parameters are e.g. the spatial locations of the nodes, then after taking into account the
interactions among all other elements, the design stress expresses the marginal cost of incrementally changing the relative position of
the two nodes. Figures 4, 6 demonstrate the design stress patterns for the specific system studied in the paper.

that do not capture entropic drives in design. We show that situating design problems in a more generic
statistical physics framework facilitates the computation of local ‘design stress’ that arises in subsystems from
different competing global ‘design pressures’ (see figure 1 for illustration). We demonstrate how global design
pressures from the remainder of a system induce sub-optimal subsystem performance, which we quantify
through Pareto frontiers computed using effective, or Landau, [19] free energies. The design stress is the
marginal cost of moving one of the system elements in design space that results from all other element
interactions. Similarly, spring tension is the marginal energy cost of an infinitesimal change in length (regardless
of the intrinsic nature and linearity of the spring).

Our approach draws on work on effective interactions in soft matter systems without a clear separation of
scales [20—22] and on statistical mechanics based approaches for materials design, [23—25] which we apply here
at the level of systems. Using this ‘systems physics’ approach, we compute free energies for sample systems and
show how the effects of competition between design pressures drive subsystem designs into distinct classes. We
also use the same method to show that it is possible to determine likely arrangements of functional units, and
routings between them, independently. Our approach gives new concrete, quantitative understanding of how
competing design pressures affect subsystem design in complex naval systems. Our approach can be
straightforwardly generalized to other classes of design problems involving complex couplings between
interconnected systems.

2. Systems physics framework

We seek a framework for studying tradeoffs in design problems. To do so, we begin from the fact that many
classes of design problems can be cast in the form of a network of functional components [13, 26]. Different
candidate design realizations arise from different intrinsic properties of the functional units, the topology of the
network of functional connections and, possibly, the spatial embedding of the functional network. For many
real-world design problems this results in a combinatorially large space of feasible design solutions [26-28]. The
structure of design space determines the form of tradeoffs between design considerations.

To study how the structure of design space encodes tradeoffs, we consider a combinatorially large set of
feasible designs ({ o'}) and a set of design objectives ({ O;}). A powerful approach to the design of complex
engineering systems, known as Set-Based Design, [2—5] involves finding candidate sets of feasible designs, as
opposed to focusing on a singular optimal design [7]. Different design objectives select different corners of the
full design space into the candidate set. Given the full design space and a set of specified average outcomes for the
design objectives ({(O;)}), an important task is to determine the probability (p,,) that a given design o would be
selected for inclusion in the set of candidate designs.

To construct a set of candidate designs with average outcomes { (;) } for the design objectives, information
theory [29, 30] indicates that the least-biased estimate of p,, is given by maximizing the functional
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with respect to p,,, where ); are Lagrange multipliers enforcing the constraint on candidate designs. Carrying out
the maximization gives

1 -2 \iOio)
= —e i s 2
L, = 2

where Z is anormalization constant. In principle, further algebraic manipulation could determine the \;and
yield a precise form for p,,.. That form of p,, would answer the question of what designs are likely to be selected.
Why certain design classes are likely to be selected, however, presents an equally important question. Answering
this question is important in untangling the dependence of specific design solutions on overall design priorities.
To answer the ‘why?’ question, we note that p,, has the form of Boltzmann weight in statistical physics. Using the
statistical physics approach takes us from equation (2) to the so-called partition function

Z_e 2N 3)
in which each )\; quantifies the ‘design pressure’ of meeting corresponding design objective O;. By specifying
how the variable design pressure affects the determination of candidate designs, the partition function provides a
means to determine why candidate designs are candidates. To concretely demonstrate the power of this
approach for general design problems, we use a specific problem from naval architecture. However, this
approach generalizes straightforwardly to other problem classes by appropriate selection of candidate designs
(o) and design objectives (O;).

3. Arrangement problem model

We consider the spatial embedding of a subsystem of the overall functional network that contains only two units
and a single functional connection. In both cases we choose a subsystem at random among two possible cases
that differ by whether the embedding of the remainder of the functional network localizes the subsystem in a
homogeneous space (Case 1), or a space that is structured by the remaining ship design (Case 2). See figure 2 for
anillustration. We show below that Case 1 exhibits behavior that results from trade-offs between considerations
of costand design freedom, and Case 2 exhibits behavior that results from trade-offs between considerations of
cost, design freedom, and performance.

For Case 1 we introduce a single explicit design objective O, together with the corresponding design pressure
A1, rigorously defined below. For Case 2, we additionally introduce a second design objective and pressure pair
0,, A, thatacts concurrently with the first. The design pressure for so-called ‘design freedom’ is not put in by
hand but rather emerges organically from careful consideration of redundancy of similar design solutions
through the Landau free energy technique. It is important to note that we are not trying to find specific preferred
or optimal values for design pressures A, A,. Instead, we are interested in exploring a wide range for both of
them and detecting the statistical, macroscopic changes in the ensemble of solutions. Two main techniques are
used for this exploration: computing the ensemble-wide statistical averages ( Q) and computing the Landau free
energy landscapes F(S) to find the preferred values of some mesoscopic design feature S.

In both cases, the monetary cost expended on routing a connection between units (E) is given by the
‘Manhattan’ distance (the sum of horizontal and vertical steps) of a minimal path between the units at some cost
per unitlength C. The objective for units separated by some relative Axand Ay is

0, = E = C(Ax + Ay), 4

and we quantify the design pressure for cost through \; = 1/T where Tis interpreted as a ‘cost tolerance’. Low
cost tolerance means that the design pressure to minimize costs is strong, which should lead to a preference for
low cost designs. Increasing cost tolerance weakens the design pressure to minimize costs. Note that the limit of
T — oo represents complete indifference to cost as a design decision factor, rather than a preference for high
cost. In statistical physics terms, E plays the role of energy, T plays the role of temperature. In addition, distinct
routings and overall displacements of the units contribute entropy, a measure of the design freedom to realize
distinct designs at fixed cost. We theoretically predict the critical cost tolerance Tgit = C/ In 2 that separates the
cost-dominated and design freedom-dominated regimes (see supplementary material stacks.iop.org/NJP/20/
103038/ mmedia for Tgyit computation).

In addition, Case 2 models the performance penalty associated with routing functional connections through
the bulkhead. We do so with the objective

02 = B, (5)

which takes the value 1 if a routing penetrates the bulkhead and 0 if it does not. We represent the penalty for
bulkhead penetrationby A, = ~.
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Figure 2. [llustration of the model for arrangement problems. The functional network (a) is embedded into an inhomogeneous space
(b), here a ship hull. Spatial embeddings (c)—(d) require routings between connections, with two generic cases. Case 1 (), routings that
are not affected by features of the embedding space, is described in figures 2 and 3. Case 2 (d), routings that are affected by features of
the embedding space, here bulkheads, is described in figures 4—6.

In both cases we use statistical physics to extract design information. Constitutive relations or ‘equations of
state’, evaluated via the expression

_ olnZ
o\

quantify how outcomes for design objectives are determined by design pressure. In the specific case we consider
here, fixing the design pressures through T'and yyields expected outcomes for (E) and (B), which indicate
expected costs and likelihood of bulkhead penetration, respectively. Likewise, the sensitivity of a design outcome
to changes in design pressure is described by a ‘susceptibility’ that can be evaluated by further differentiation.
The magnitude of susceptibility is directly related to the magnitude of fluctuations about the average design
objective (supplementary material available online at for more information). We also evaluate the likely design
outcomes for specific design features S;

(O) = (6)

(5) = éz Si)e =N %)

Finally, effective, or Landau, free energies F for different system elements (e.g. unit locations, routing locations)
can be computed as

- iOi(o
e o 3 8(S(0) — Spe =, ®)

and represent the change in the overall design objective resulting from the competition between the design
pressures. Note that, because of the summation in equation (8), each value of a design feature S; corresponds to a
bundle of detailed design solutions o rather than a specific one [19]. Minimal free energy corresponds to the
value of design feature S of the ‘optimal’ design bundle, whereas free energy isosurfaces represent non-optimal
Pareto frontiers. Differentiating the free energy (— V F) yields a ‘design stress’, which quantifies how overall,
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Figure 3. (a) Example unit positions and routings for spatially homogeneous subsystem embeddings (Case 1, see figure 2). Blue
markers indicate unit positions, red lines indicate possible routings. (b) equation of state relating cost tolerance (T) and average cost
((E), in currency) normalized by maximum possible cost expended (Emax) for subsystemslocalizedinan L x Lregion ofa ship

(L = 10blue curve; L = 100 green curve). Shaded areas indicate cost variability. Inset images illustrate typical design realizations
below (condensed) and above (separated) Tt = 1/ In(2). (c) Cost variability (o, a susceptibility) normalized by maximum possible
expenditure as a function of cost tolerance. The peak at Teyit for a finite sized system (L = 100) would correspond to a phase transition
in the thermodynamic limit. (d) Cost variability normalized by average expenditure as a function of cost tolerance. Data indicate that
for both large and small systems relative cost variability is large for low average cost designs.

global design pressure is distributed locally among design elements in the subsystem. Similarly, ‘design strain’ in
asubsystem expresses the displacement of subsystem units or routings from optimality due to stress between
subsystem and whole system design pressure. We use ‘displacement’ to denote any deviation from the subsystem
free energy minimum in the space of design feature S. For the case considered here, the design criterion itself is
the spatial location (x, y) of one of the functional units, thus displacement has the usual spatial meaning as well.
Details of analytic and numerical computations that yield these quantities for our model systems are described in
the supplementary material.

4, Results

We consider the spatial embedding of a subsystem of the overall functional network that contains only two units
and a single functional connection. In both cases we choose a subsystem at random among two possible cases
that differ by whether the embedding of the remainder of the functional network localizes the subsystem in a
homogeneous space (Case 1), or a space that is structured by the remaining ship design (Case 2). See figure 2 for
an illustration. We will show below that Case 1 exhibits behavior that results from trade-offs between
considerations of cost and design freedom, and Case 2 exhibits behavior that results from trade-offs between
considerations of cost, design freedom, and performance.

4.1. Case 1, homogeneous embeddings: cost/design freedom trade-off

We consider the homogeneous embedding of a subsystem with two units, labeled A and B, within a
homogeneous region of space, here a single watertight compartment (illustrated schematically in figure 2(c)).
The location of A and B within the compartment, and the routing of a functional connection between them,
leads, in our model system, to a trade-off between cost expenditure, E, and design freedom, measured by the
routing entropy. The optimal design of this subsystem is determined by the relative importance of cost and
design freedom, which we parametrize through the cost tolerance T. In figure 3(a) we illustrate example
schematic embeddings of the subsystem of interest into a region of space of size L x L. We study examples in
which the subsystem is highly localized (L = 10) and delocalized (L = 100) in figures 3(b)—(d). For both values of
L we study ensembles of design solutions at a series of values for cost tolerance.

For L = 10, we find that there is a slowly varying, monotonic increase in average cost with increasing cost
tolerance (figure 3(b), blue curve). However, for L = 100, where the subsystem embedding is less constrained by
the remainder of the network, we find a sharp increase in cost around Teyit = C/ In 2 (figure 3(b), green curve).
This sharp increase in cost is reminiscent of a phase transition in physical systems, and we find that the amount
of absolute cost uncertainty across feasible solutions (figure 3(c); akin to a susceptibility for cost) has a peak at
Terit- For L = 100, when the subsystem is less constrained, the absolute cost uncertainty is low at both low and
high cost tolerance, indicating that in those regimes routings between unit pairs are almost always cheap, or
almost always expensive relative to possible maximum cost. For L = 10, when the subsystem is more tightly
constrained, the absolute cost uncertainty is large over a broad range of cost tolerances.

However, when measured relative to average cost, we find that cost uncertainty is large for both L = 10 and
L = 100 in the limit of low cost tolerance. Figure 3(d) shows that relative cost uncertainty diverges as cost
tolerance goes to zero. This result means that even though, as expected, low cost tolerance leads to low cost
designs for the subsystem of interest, possible design outcomes show uncertainty of 100% or more in terms of
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Figure 4. Pressure from overall design objectives induces stress on subsystem design elements. For spatially homogeneous subsystem
embeddings (Case 1, see figure 2) design stress can be decomposed into contributions from cost pressure (panel (a)) and design
freedom pressure (panel (b)). Depending on the relative strength of the design pressures, the different phase behaviors in figure 3
originate from underlying subsystem effects, illustrated in panels (c)—(f). Panels (c)—(f) plot Pareto frontiers (Landau free energy
isosurfaces) that indicate equivalent, sub-optimal subsystem designs that could arise if the subsystem design was forced to sacrifice
performance to the remainder of the system. Atlow cost tolerance (T' = 0.5 ¢; T = 1.0 d) units are preferentially condensed. At high
cost tolerance (T = 2.0 f) units are preferentially separated. At the critical cost tolerance (T' = Tgyit = 1/ 1n2) there is no preferred
separation distance.

average cost. Though this effect might not be a large design concern if it occurred only in the subsystem of
interest, we note that our choice of subsystem was arbitrary, so that every subsystem in the network should
exhibit this effect. A cascade of such occurrences throughout a large functional network in a complex product,
such as a ship, would lead to large macroscopic fluctuations in cost of the overall design.

For L = 100, figure 3(d) indicates that as the cost tolerance increases across the critical value, there is a sharp
drop in the cost uncertainty relative to average cost, that is driven by the sharp increase in average cost seen in
figure 3(b). This indicates that above the critical cost tolerance candidate designs are high cost, but show
relatively small cost uncertainty. Taken together, the features of the relative cost uncertainty curve indicate a
fundamental trade-off: tight cost constraints lead to wild relative cost uncertainty, whereas low relative cost
uncertainty can only be achieved at large cost.

To make the origin of these behaviors more concrete, in figure 4 we fix the position of one of the units to be
the origin, and examine how the design pressures from cost (figure 4(a)) and design freedom (figure 4(b))
influence the (x, y) location of the second unit. For the case of L = 30, we plot one quadrant, the other quadrants
being related by symmetry. Arrows indicate the relative magnitude and direction of stress that each different
form of design pressure induces on the location of the second unit. Comparing figure 4 panels a and b shows that
cost and design freedom pressures act in different directions with cost driving the units closer together and
design freedom driving them further apart. The balance between these forces is determined by the cost tolerance,
and leads to qualitatively different outcomes depending on this value, which can be seen in the Pareto frontiers
plotted in figures 4(c)—(f). For physics readers, we note that Pareto frontiers correspond to isosurfaces of the
Landau free energy (see, e.g., [19]) for unit locations. We plot Pareto frontiers describing the deviation from the
optimal overall objective at a series of cost tolerances. The reason for considering non-optimal solutions is that
any subsystem is only part of the overall design, and we do not expect that, in general, overall optimal designs will
correspond to optimal outcomes for all subsystems. Non-optimal Pareto frontiers provide a means of
communicating how design pressure from the rest of the functional network could be expected to influence the
behavior of a subsystem.

When we compute the corresponding Pareto frontiers, we find that at low cost tolerance (T = 0.5;
figure 4(c)), units are condensed, since the behavior is dominated by cost minimization, which is characterized
by Pareto frontiers with constantx + yinthelimitof T' = 0. Increasing cost tolerance alters the balance
between cost and design freedom. Even below the critical tolerance (T = 1.0; figure 4(d)), this causes a change in
shape in the Pareto frontiers. At the critical cost tolerance (I' = Tgrit; figure 4(e)) Pareto frontiers more closely
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resemble surfaces with constantx — yrather thanx + yaswe found atlow cost tolerance. Above the critical cost
tolerance (T = 2.0; figure 4(f)), Pareto frontiers reverse their order with low free energy locations for the
location of the second unit forced to the boundary.

4.2. Case 2,inhomogeneous embeddings: cost/design freedom/performance trade-offs

We next consider the additional design pressure that arises from an inhomogeneous embedding space. For
concreteness, we represent this as a bulkhead within the ship hull. Bulkheads are features designed to prevent
water that enters the hull through a breach from filling all parts of hull and sinking the ship. Routings through a
bulkhead are expensive and also can reduce a distributed system’s effectiveness, and thus overall ship
performance. Hence, additional performance pressure arises in the case that elements of a subsystem are located
in different bulkhead compartments (schematic illustration in figure 2(c)). We parametrize it with bulkhead
penalty v, acting as the second design pressure in the system. Again, from a large functional network we
randomly choose a subsystem comprised by a pair of units with a single functional connection. However, we
assume that the connections between the subsystem of interest and the remainder of the functional network
drive the location of one unit to be on one side of the bulkhead and the other unit to be on the opposite side. Both
units are vertically constrained to be below the top of the bulkhead. We allow two types of routings between the
units to study their trade-off: one routes along the shortest path through the bulkhead and suffers the penalty ;
the other routes along the shortest path around the bulkhead, with no penalty. For concreteness we give results
for systems of fixed size (20 x 20 with a vertical bulkhead in the middle) which are representative of the general
behaviors we observe. See supplementary material for results for other system sizes.

Compared with Case 1, breaking spatial homogeneity makes the relationship between route paths and unit
locations more complicated. This complication arises because routings now couple to both unit positions and
geometric features. Because of this, we study unit positioning and routing separately. As in Case 1, we compute
Pareto frontiers via Landau free energies, but in this case we do so by integrating out the degrees of freedom of
units and routings separately. Figure 5 shows Pareto frontiers for unit routing positions as a function of cost
tolerance for bulkheads with representative high (v = 8, panels a—h) and low (y = 2, panels i—p) bulkhead
penalty. The difference of Ay = 6 between the two values implies that the relative statistical weight of routing
through the bulkhead changes roughly by a factor of ¢® ~ 400, and the effects on node positioning are
immediately visually apparent. Also apparent is the effect of A~y on design performance, characterized by the
(B), i.e. the fraction of all designs that route through the bulkhead. See supplementary material for computation
details.

At high bulkhead penalty (y = 8), and low cost tolerance (T = 0.5) Pareto frontiers for unit locations
(figure 5(a)) and routing (figure 5(e)) both indicate strong coupling to the top of the bulkhead. Results for
increased cost tolerance (T = 1.0) that is still below Tgyit indicate that unit locations are less strongly coupled to
the bulkhead (figure 5(b)). Comparison with results for routing (figure 5(f)) indicate that this coincides with a
drop in the fraction of designs that route through the bulkhead by nearly an order of magnitude ((B) = 0.025 at
T = 1.0,see (B) = 0.225at T = 0.5), and though routes remain strongly localized at the top of the barrier,
Pareto frontiers at equivalent objective cost (free energy) are further from the bulkhead. These trends continue
through Tgrit (figures 5(c), (g)). However, above Toit (T = 2.0) figure 5(d) we observe that although the units
delocalize from the bulkhead (figure 5(d)), the routings remain strongly coupled to the top of the bulkhead, and
the probability that a design routes through the bulkhead drops to (B) = 0.001. Comparing unit locations
(figures 5(a)—(c)) and routing locations (figures 5(e)—(g)) indicates that at or below Tgyit unit locations are
correlated with routing locations. However, above Tyt (figures 5(d), (h)) the most probable unit locations do not
correspond to most probable routing locations.

We contrast the above results at high bulkhead penalty (y = 8, figures 5(a)—(h)) with low bulkhead penalty
(y = 2, figures 5(1)-(p)). Atlow cost tolerance (T = 0.5) we see that relaxing the bulkhead penalty still causes the
unit positions to localize near the bulkhead (figure 5(e)) but the units no longer localize near the top of the
bulkhead as they did at high bulkhead penalty (figure 5(a)). Likewise, routings no longer localize near the top of
the bulkhead (figure 5(m)), but follow the unitlocations and pierce the bulkhead with high probability
((B) = 0.992). Atincreased cost tolerance (T = 1.0, Tgit) the localization at the top of the bulkhead appears
again (figures 5(j)—(k), (n)—(0)). At high cost tolerance T' = 2.0 the units again delocalize from the bulkhead
(figures 5(1), (p)) and the cases ¥ = 2 and y = 8 start looking very similar.

To further understand the competing design pressures of cost, design freedom, and performance, we
compute design stress in unit positioning (see figure 6). At a given unit position (corresponding to ‘strain’ in the
language of materials science) design stress indicates the magnitude and direction in which changing the
placement of the unit would lead to the greatest decrease in the overall objective cost for the subsystem. We find
thatatlow cost tolerance (T = 0.5, figures 6(a), (¢)), design stress is directed primarily toward the bulkhead, with
discernible stress toward the top of the compartment for high cost penalty. An increase in cost tolerance
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Figure 5. Pareto frontiers (Landau free energy isosurfaces) for unit and routing locations for spatially inhomogeneous subsystem
embeddings (Case 2, see figure 2) for different cost tolerances T(T = 0.5 first column, T' = 1.0 second column, T = Tgit third
column, T = 2.0 fourth column) and performance penalties for bulkhead penetration (y = 8 top two rows, ¥ = 2 bottom two rows).
Each panel shows the 20 x 20 cell domain in which the units can be placed, split in the middle by a bulkhead of height 17. The (x, y)
coordinates correspond to the possible positions of functional units and routings. Blue curves indicate unit positions, normalized so
that most favorable unit locations have value 0, with increasing values indicating the loss in subsystem objective in units of the cost
tolerance. Red curves indicate routing locations, normalized so that locations through which connections route with absolute
certainty have value 0, and increasing values indicate the reduction in subsystem objective of routing through a given location in units
of cost tolerance. Dashed horizontal lines indicate the upper boundary of the domain where the units may be placed. Thick black
vertical lines indicate the position of the bulkhead, their transparency is color-coded by (B). Solid bulkhead indicates that it serves as a
significant obstacle and routings would run around it (low (B)). Transparent bulkhead indicates that it is relatively easy and likely to
route through (high (B)).

(T'= 1.0, figures 6(b), (f)) leads to similar design stress at low bulkhead penalty (figure 6(f)) but a more intricate
pattern of stress at high bulkhead penalty (figure 6(b)) that includes regions with stress toward and away from
the both the bulkhead and the top of the compartment. Similarly, complex patterns of stress occur at both low
and high bulkhead penalty at Tgit (figures 6(c), (g)). At high cost tolerance (T = 2.0, figures 6(d), (h)), the pattern
of design stress is predominantly away from the bulkhead.

The behaviors we find that arise from the competition between cost, design freedom, and performance
design pressures can be classified qualitatively according to the phase diagram in figure 7. In figure 7 we show,
schematically, the effects of bulkhead penalty «yand cost tolerance T on bulkhead penetration (a) and relative
unit distance (b). The combination of these effects also results in a complicated emergent relationship between
the vertical positions of the units (c). To provide a more concrete and quantitative example, panels (d) and (e)
show respectively the bulkhead penetration fraction and the correlation in vertical node positions for the same
system of size L = 20.
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Figure 6. Design stress for unit locations in spatially inhomogeneous subsystem embeddings (Case 2, see figure 2) for different cost
tolerances T'(T = 0.5 first column, T = 1.0 second column, T = Tgyt third column, T = 2.0 fourth column) and performance
penalties for bulkhead penetration (y = 8 top row, v = 2 bottom row). Plots indicate that if a unit was sited at the origin of an arrow
in response to whole system design pressure, design pressure acting on the subsystem alone would drive the unit in the direction of the
arrow, with a strength proportional to the length of the arrow.

5. Conclusion

We developed a general, statistical physics framework for analyzing complex design problems. We
demonstrated the application of this framework to characterizing tradeoffs between competing design presures.
For concreteness, we studied trade-offs between competing design pressures of cost, design freedom, and
performance in arrangement problems from naval architecture design. We analyzed ship models by applying
physics principles at the systems-level and found a rich pattern of behavior. We gave an explicit formulation of
Pareto frontiers in terms of isosurfaces of Landau free energy, and computed ‘design stress’ induced by sub-
optimal subsystem embedding. Our framework recasts common design challenges in terms of the well-
understood concepts of pressure, stress and strain. We find that these concepts, which are typically used to
characterize the behavior of materials, also provide a means of characterizing system-level behavior.

Our approach opens new avenues for addressing design challenges that arise in complex systems. Our
framing of system design in terms of statistical mechanics has some technical overlap with optimization
approaches based on simulated annealing [ 18]. Simulated annealing invokes thermodynamics by using a
fictitious Hamiltonian cooled in silico to zero temperature to find the global minimum of an objective function.
Our approach with minimally biased probability distributions, though derived from information theory, is
mathematically equivalent to a fictitious Hamiltonian held at a constant finite temperature. Maintaining finite
temperature highlights the role of design pressures that arise from design freedom and become relevant in
combinatorially large optimization spaces, and in early stage design [6]. We believe this approach can give
important information about the systems of interest that could enable human designer choices. The separation
of subsystem designs into different architecture classes can enable designers to communicate about qualitative
style choices. Knowledge about where the paths between the units are likely to route, even if the unit locations are
not specified, and vice versa, could facilitate the control of ship outfit density. Knowledge about tradeoffs
between cost constraints and cost variability could inform aspects of the design project around predictable and
consistent expenses. Understanding how different design objectives create design stress on subsystems could
facilitate educated choices of sub-optimal designs for individual subsystems in the service of optimizing the
system as a whole. All of these forms of knowledge are crucial in the early design stages of a broad class of
complex design problems.

Finally, physics concepts and principles are typically used to understand the behavior of a part of a larger
system. E.g. for a ship it is common to: use the physics of electromagnetism to understand the function of a
radar; use materials physics to understand the properties of a hull; use solid state physics to understand the
properties of electronics; use hydrodynamics to understand the interaction of a hull with water; use
thermodynamics to understand the function of an engine. Here, without explicit reference to the underlying
physical nature of component subsystems, we show that the principles of statistical mechanics give rise to direct
analogs of familiar macroscopic physics concepts, such as pressure, stress, and strain, as well as provide new
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Figure 7. Phase diagram for spatially inhomogeneous subsystem embeddings (Case 2, see figure 2), summarizing effects of
performance penalties associated with bulkhead penetration () and cost tolerance (7). (a) Schematic illustration of effects of T'and -y
on bulkhead penetration (performance proxy) for arbitrary subsystem localization. (b) Schematic illustration of effects of T'and yon
unit separation (cost proxy) for arbitrary subsystem localization. (c) Schematic illustration of combination of bulkhead penetration
(performance proxy) and unit separation (cost proxy) on vertical correlation in unit layout (architecture-class proxy) for arbitrary
subsystem localization. (d) Quantitative phase plot for subsystem localization of fixed size L = 20. Green shade indicates average
system performance (bulkhead penetration probability). (e) Quantitative phase plot for vertical correlation in unit layout
(architecture-class proxy). Markers in (d)—(e) indicate T, y values corresponding to plots in figures 5 and 6.

insight into the architecture of the ship as a whole. Our focus on an established, [13] minimal model of ship
design was motivated both by pressing challenges in naval architecture, and by the goal of providing a concrete,
self-contained example of our approach. However, our ‘systems physics’ approach generalizes straightforwardly
in several respects: to more detailed models of naval architecture, to subsystems with more units, and more
complex functional connections, and, most importantly, to other classes of systems-level design problems.
Systems-level applications of physics have led to constructive engagements between physics and economics,

[31, 32] network science, [33, 34] and epidemiology [35, 36]. We believe the present systems-level application of
physics will lead to a similar constructive engagement with design problems in a wide variety of domains.
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