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Large-dimensional empirical data in science and engineering frequently has low-rank structure and
can be represented as a combination of just a few eigenmodes. Because of this structure, we can use
just a few spatially localized sensor measurements to reconstruct the full state of a complex system.
The quality of this reconstruction, especially in the presence of sensor noise, depends significantly on
the spatial configuration of the sensors. Multiple algorithms based on gappy interpolation and QR
factorization have been proposed to optimize sensor placement. Here, instead of an algorithm that
outputs a singular “optimal” sensor configuration, we take a thermodynamic view to compute the full
landscape of sensor interactions induced by the training data. The landscape takes the form of the
Ising model in statistical physics, and accounts for both the data variance captured at each sensor
location and the crosstalk between sensors. Mapping out these data-induced sensor interactions
allows combining them with external selection criteria and anticipating sensor replacement impacts.

Many natural and engineered systems can take a vari-
ety of high-dimensional states, with the amount of data
growing rapidly with the number of observed snapshots
and increasing snapshot resolution. At the same time,
the amount of information in this data usually grows
much slower, often logarithmically [1–3]. In this situa-
tion, any system state can be closely approximated by
a combination of just a few basis vectors, enabling algo-
rithms from lossy image compression to Dynamic Mode
Decomposition [4, 5]. While the optimal basis can be
learned from historical data or high-fidelity simulations,
states cannot be measured in that basis directly and often
can only be accessed by spatially-localized sensors.

Reconstruction of full states from localized sensor mea-
surements has a long history under the umbrella term of
compressed sensing, where the sampling points (sensor
locations) are chosen randomly and the state is recon-
structed as a sparse combination of universal basis vec-
tors [6–8]. More recently, driven by advances in gappy
and reduced-order PDE methods [9–11], sparse sensing
algorithms have been developed to take advantage of the
available training data to reduce the number of sensors
required for given reconstruction quality [12]. The gen-
eral sparse sensing problem is usually set up as follows:
given the training data matrix X consisting of N snap-
shots of an n-dimensional state, one needs to reconstruct
an unknown state x⃗ ∈ Rn sampled from the same distri-
bution as the data by using only the noisy measurements
of a few components of the state y⃗ ∈ Rp, p≪ n.

While any combination of sensors of appropriate rank
can be used to compute the maximal likelihood state
reconstruction, the reconstruction robustness to sensor
noise may vary by orders of magnitude, leading to the
problem of sensor placement. Each sensor configuration
can be assigned a cost function value that can be ap-
proximately maximized with efficient greedy heuristics

based on optimal experiment design, information theory
metrics, Gibbs sampling, or matrix QR pivoting [12–16].
While these methods return a sensor configuration prov-
ably close to the true optimum due to the submodularity
property [17–19], they do not inform why a particular
configuration should be chosen, how to best modify it if
sensor budget changes, and what would be the impact of
a sensor malfunction on the reconstruction quality.
In this paper, instead of searching for a singular “opti-

mal” configuration of sensors, we take a thermodynamic
perspective to study the entire landscape of sensor inter-
actions, akin to saliency maps in machine vision [20]. We
show that the sensor interactions can be interpreted in
terms of 1-body, 2-body, and higher order Hamiltonian
terms computed directly from the training data. Un-
derstanding the part of the landscape induced by data
directly inspires a greedy sensor placement algorithm, al-
lows incorporating landscapes driven by external cost fac-
tors, and anticipates the impacts of sensor replacement
needs. The energy landscape analysis can be combined
with other recent advances in sensor placement studies.
State reconstruction algorithm. The training library

can be represented via Proper Orthogonal Decomposition
(POD) and closely approximated via POD truncation:

X = ΨΣV T ≈ ΨrΣrV
T
r , (1)

where we dropped all singular values beyond the first r
per the optimal truncation prescription [3]. In the re-
duced basis any state can be approximated as a linear
combination of data-driven basis vectors x⃗ ≈ Ψra⃗.
Our goal is to estimate the coefficients ˆ⃗a from the

spatially-localized measurements y⃗ = Cx⃗ + ξ, where C
is a p × n selection matrix consisting of p rows of the
identity matrix and ξ is Gaussian uncorrelated sensor
measurement noise with magnitude η. Given this mea-
surement model and a Gaussian prior distribution of the
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FIG. 1. Computation of the sensor placement landscape from
the training data library. (a) A collection of data snapshots of
identical dimensions, here the Sea Surface Temperature data
set. (b) The library is used to compute the sensor place-
ment landscape to multiple orders, here showing the 1-point
landscape at each location hi and the 2-point landscape Jij

conditioned on the sensor locations marked with white crosses
and highlighted with dashed circles.

coefficients a⃗ parameterized by the variances S, we derive
the following maximal likelihood reconstruction:

ˆ⃗a =

(
S−2 +

ΘTΘ

η2

)−1
ΘT y⃗

η2
= A−1Θ

T y⃗

η2
; ˆ⃗x = Ψr

ˆ⃗a (2)

valid for any choice of sensors C and sensor readings y⃗,
with Θ = CΨr. However, the accuracy and noise sensi-
tivity of this reconstruction depend dramatically on the
properties of the sensor-dependent matrix A, and thus
requires a strategy to place sensors systematically.

Sensor placement landscapes. The reconstruction er-
ror of Eqn. 2 can be measured by various scalar func-
tions of the matrix A, most commonly its determinant,
in an approach known as D-optimal design [13]. The
determinant is an attractive optimization target because
it characterizes the uncertainty hypervolume of the re-
construction, its maximum can be approximated with
the QR decomposition [12], and the submodularity prop-
erty guarantees the near-optimality of greedy optimiza-

tion [17–19].
In this paper we identify the (negative) determinant of

the inversion matrix with the energy or Hamiltonian of
a particular set of sensors γ. The resulting Hamiltonian
is remarkably similar to the Ising model found across
statistical physics:

H(γ) ≡− ln(detA) ≈ Eb +
∑

i∈γ

hi +
∑

i̸=j∈γ

Jij (3)

hi ≡− ln
(
1 + g⃗i · g⃗i/η2

)
≤ 0 (4)

Jij ≡
1

2

(g⃗i · g⃗j/η2)2
(1 + g⃗i · g⃗i/η2)(1 + g⃗j · g⃗j/η2)

≥ 0, , (5)

where g⃗i are the sensing vectors describing the sensi-
tivity of each possible sensor location to each of the
POD modes, computed as rows of the data-driven ma-
trix G = ΨrS. The functional form of hi and Jij is
computed via series expansion of the matrix A in powers
of η (Eqn. 2) and resummation, similar to enumeration
arguments in self-assembly studies [21, 22] (see Supple-
mentary Materials for derivation).
In the Hamiltonian formulation of sensor placement

3, the objective depends on the locations of individual
sensors and sensor pairs from the chosen set γ (Fig. 1).
Qualitatively, minimizing the Hamiltonian requires pick-
ing sensors i ∈ γ that capture a lot of signal variance
(large g⃗i · g⃗i), but are not very correlated with each other
(small g⃗i · g⃗j). While a combinatorial search for the
lowest energy configuration would require evaluating the
O
(
n2
)
elements of the full crosstalk J matrix, we propose

a simple greedy “2-point” algorithm that minimizes the
marginal energy of each next placed sensor:

q = argmin
q


hq + 2

∑

i∈γ

Jiq


 ; γ ← q, (6)

requiring justO(p · n) evaluations to place p≪ n sensors.
Reconstruction progress. We demonstrate the sensor

placement algorithm on an example dataset of weekly av-
erage sea surface temperature (SST) between 1990 and
2023 [23], truncated to POD rank r = 100. Each frame
covers the entirety of Earth surface in equirectangular
projection at 1◦ resolution, resulting in 360×180 pixel im-
ages with n = 44219 pixels corresponding to sea surface.
We show that by employing as few as 25 sensors selected
by the 2-point algorithm with noise level of η = 1◦C, the
entire temperature field can be reconstructed to within
1◦C (Fig. 2a). The reconstruction method also provides
an Uncertainty Quantification (UQ) method in form of
the uncertainty heat map at every pixel (Fig. 2b). Un-
certainty is lowest close to the selected sensors, primar-
ily around continents and within inland bodies of water,
and highest in southern parts of the Indian, Pacific, and
Atlantic Oceans. We emphasize that the sensor place-
ment algorithm was trained exclusively on the snapshot
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FIG. 2. State reconstruction with progressively more sensors
p at noise level η = 1.0◦C. (a) Reconstruction error between
the maximal likelihood reconstructed state and the true state.
(b) Uncertainty heatmaps of the reconstruction and the sen-
sor locations chosen by the 2-point algorithm (white crosses).
(c) RMSE of the reconstruction with the solid curve and the
shaded region showing mean ± one standard deviation across
20 realizations of sensor noise. The RMSE peak corresponds
to the model dimension, here r = 100. (d) Distribution of
reconstruction z-scores at every pixel zi = (x̂i − xi)/σi

library, with no additional information about the struc-
ture of Earth’s oceans or their physical processes.

The reconstruction Root Mean Square Error (RMSE)
shows non-monotonic dependence on the number of sen-
sors (Fig. 2c). While adding more sensors contributes
more information to the reconstruction algorithm, it also
trades off with the number of independent sources of
noise, resulting in best performance at p ∼ 25 for sen-
sor noise of η = 1.0◦C. Importantly, the RMSE peaks
at p ∼ r = 100 since the model cannot reconstruct the
features in the truncated POD modes. Since both the

reconstruction error and reconstruction uncertainty in-
crease with sensor number, we assess the model confi-
dence by computing the z-score of each individual pixel
zi = (x̂i − xi)/σi and plotting its distribution (Fig. 2d).
Across all sensor numbers, the z-score distribution is
symmetric and concentrated within z ∈ [−3, 3], indicat-
ing that the reconstruction does not systematically over-
or under-estimate the temperature, and provides an ac-
curate estimation of the uncertainty.

Reconstruction diagnostics We compute sensor place-
ment and reconstruction error across five datasets and
four sensor placement methods. Apart from the SST
dataset, we use the Olivetti faces dataset [24], snapshots
of a numerical simulation of flow past a cylinder [25, 26],
as well as synthetic Gaussian Free Field [27] and Random
State System [28] datasets (Fig. 3a, see SM for dataset
details). The four sensor placement algorithms are: ran-
dom, 1-point (minimizing hq only), 2-point (Eqn. 6), and
QR-based [29]. For the QR sensors, we compute recon-
struction with and without the prior regularization. For
each dataset, the sensor placement landscape is derived
from the training set with 80% of the data, and the re-
construction error is computed across the test set with
the remaining 20% of the data.

For the three empirical datasets (SST, Olivetti, and
cylinder) the random and 1-point algorithms have higher
energies than the other two (Fig. 3b). The 1-point algo-
rithm has higher RMSE than other reconstructions with
prior, highlighting the importance of crosstalk for sen-
sor placement (Fig. 3c). The QR sensors without prior
regularization also show consistently higher RMSE, jus-
tifying the need for a prior. The regularized random, 2-
point, and QR algorithms show nearly equivalent RMSE
error curves, all showing the peak at p ∼ r due to the
POD mode truncation. For the two synthetic datasets all
sensor placement methods have nearly equivalent perfor-
mance, but can also be compared to brute force search
(see SM). We conclude that while the 2-point and the QR
algorithms are based on the same underlying POD modes
and have nearly equivalent numerical performance, the
2-point algorithm provides much richer interpretation in
terms of sensor landscapes and interactions.

Conclusions and outlook. The key advance of this pa-
per is casting the sensor selection problem in thermody-
namic terms of interaction energies of progressively larger
numbers of sensors. While we focus the discussion on
the 1-body and 2-body interactions, the mathematical
formalism extends to any higher number (see SM). The
shape of the 2-body interactions can be further connected
to the properties of the physical, mathematical, or even
artistic processes that generate data [30–32]. We used a
greedy 2-point method of sensor placement in order to
limit the required memory and computing time, but if
the whole landscape could fit in memory, better energy
minima can be obtained through methods such as gradi-
ent descent or simulated annealing [33]. Due to the usage
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FIG. 3. Comparison of reconstruction metrics for different datasets, with 4:1 train/test split. (a) Examples of dataset snapshots
for different systems. The RSS dataset is non-spatial, so temporal trajectories are shown instead. (b) Exact energies of sensor
configurations selected with different methods: random placement, 1-point algorithms, 2-point algorithm, and QR pivoting.
(c) Root mean square error (RMSE) of state reconstruction, with solid line and shaded region indicating average ± 1 standard
deviation across the test set. The vertical dashed line indicates the number of modes r used in the reconstruction.

of a regularizing prior, state reconstruction can be con-
sistently performed for any number of sensors without
the requirement that p ≥ r [12].

While the sensor landscape approach provides inter-
pretability and in some regimes selects better sensor sets
than state-of-the-art approaches, it is ultimately followed
by a linear algorithm for reconstructing the state from
sensor readings, limiting the reconstruction accuracy.
Recent work has shown that a linear algorithm of sen-
sor selection based on QR factorization can be combined
with a nonlinear shallow decoder network state estima-
tion, which nevertheless requires neural network retrain-
ing for any new sensor set [34]. An alternative approach
instead focuses on learning the data manifold geometry
and identifying nonlinear coordinates [19], which would
be equivalent to replacing the Gaussian prior in our ap-
proach with a more complex one. Other sensor placement
extensions can involve estimation of time-dependent dy-
namics through Kalman filtering [35], or sensors advected
by the flows they are trying to measure [36]. Finally, the
approach here identifies only the part of sensor place-
ment landscape induced by the training data, which can
be combined with other design objectives such as place-
ment cost or restrictions [37–40].

The authors would like to thank S.E. Otto and
J. Williams for helpful discussions and L.D. Lederer for
administrative support. This work uses Scientific Color
Maps for visualization [41]. The authors acknowledge
support from the National Science Foundation AI Insti-
tute in Dynamic Systems (grant number 2112085).
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[8] F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zde-
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S1. DATA PREPROCESSING

A. Sea Surface Temperature

The Sea Surface Temperature (SST) dataset is curated
by the National Oceanic and Atmospheric Administra-
tion (NOAA) and employs the Optimal Interpolation
(OI) method to collect observations from different plat-
forms and places them on a single regular grid for long
periods of observations [1]. In this work we use OISST
2.0 dataset [2] that has the spatial resolution of 1 de-
gree in both latitude and longitude, and is temporally
averaged for each week between Dec 31, 1989 and Jan 1,
2023 for a total of N = 1727 snapshots. Each temper-
ature snapshot is given in equirectangular projection of
size 360 × 180 pixels. All of land surface of Earth is ex-
cluded from observations via a time-independent binary
mask, leaving n = 44219 pixels that vary between the
states. We center the dataset by subtracting the tempo-
ral mean temperature profile from each snapshot. The
POD is truncated to rank r = 100,

B. Olivetti faces

The Olivetti faces dataset consists of photos of individ-
uals taken between April 1992 and April 1994 at AT&T
Laboratories Cambridge [3]. Each of 40 individuals has
10 images, for a total of N = 400 presented in random
order. Each photo has the size 64 × 64 grayscale pixels,
resulting in n = 4096. We center each image both locally
and globally by subtracting the mean brightness value of
each image and the mean value across the dataset. The
POD is truncated to rank r = 100.

C. Cylinder flow

The cylinder flow dataset consists of scalar vortic-
ity fields in 2D flow of a liquid around a cylinder, nu-
merically simulated with immersed boundary method in
Refs. [4, 5]. In the simulation regime at Reynolds num-
ber Re = 100, the flow consists of periodic shedding of
vortices from the two sides of the cylinder in alternat-
ing order. The data consists of N = 151 snapshots of
resolution 449 × 199 pixels, resulting in data dimension

∗ aklishin@uw.edu

n = 89351. We center the data by subtracting the tem-
poral average vorticity profile from each snapshot. The
POD is truncated to rank r = 40.

D. Gaussian Free Field

The Gaussian Free Field (GFF) dataset is generated
synthetically with the FyeldGenerator package [6]. The
field is generated by drawing pseudorandom values of
Fourier modes according to a user-specified power spec-
trum. In order to ensure that the field has coarse fea-
tures on small spatial scale, we chose power spectrum
P (k) ∝ k−10 as opposed to the usual P (k) ∝ k−2 for
standard GFF. We generated N = 50 pseudorandom
snapshots of a field in the spatial domain 5×5 pixels, re-
sulting in n = 25. The small size of the synthetic dataset
was required to enable the exhaustive enumeration of sen-
sors, see Sec. S10. We center each image both locally and
globally by subtracting the mean brightness value of each
image and the mean value across the dataset. The POD
is truncated to rank r = 23, equal to the number of sin-
gular values above machine precision σ > 10−15.

E. Random State System

The Random State System (RSS) dataset is generated
synthetically with the Python Control Package [7] that
replicates the functionality of Matlab Control Toolbox.
RSS is a linear dynamical system with equation ˙⃗x = Mx⃗
for a random square matrix M of specified dimension,
which we choose to be n = 25. The generating package
does not request any other free parameters such as the
distribution of the random matrix, other than ensuring
the dynamical system stability, i.e. ∀λ : Re(λ) ≤ 0. We
obtain the trajectory data by initializing random iid ini-
tial condition xi(t = 0) ∼ N (0, 1) and integrating the
dynamical equation numerically in the range t ∈ [0, 5],
sampling N = 101 snapshots. The small size of the syn-
thetic dataset was required to enable the exhaustive enu-
meration of sensors, see Sec. S10. We center each state
both locally and globally by subtracting the mean bright-
ness value of each image and the mean value across the
dataset. The POD is truncated to rank r = 19, equal to
the number of singular values above machine precision
σ > 10−15.

ar
X

iv
:2

30
7.

11
83

8v
1 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  2

1 
Ju

l 2
02

3



2

F. Dataset singular values

Fig. S1 shows the spectra of singular values for each of
the five datasets, along with the truncation threshold. As
expected, singular values span many orders of magnitude
for both empirical and synthetic datasets.

S2. PRIOR AND STATE RECONSTRUCTION

A. Bayesian inference

Here we situate state reconstruction as a problem of
Bayesian inference from noisy sensor data. We place
p ≪ n sensors each measuring the scalar field in one
location. We denote the set of sensors as γ, the set of
sensor location indices. Given a full n-dimensional state
vector x⃗, the sensor output is a much shorter state vector,
sometimes called gapped [8]:

y⃗ = Cx⃗ = CΨra⃗ = Θa⃗, (S1)

where C is a p×n sensor selector matrix with the entry 1
for the location that each sensor measures, and 0 other-
wise. The matrix Θ : p× r combines the sensor selection
with the low-rank representation of the scalar field.

We further assume that each sensor measures the
scalar field with a Gaussian noise of magnitude η. Thus,
given a true state a⃗, the probability distribution of sensor
readings is given by:

p(y⃗|⃗a) ∝ exp

(
− (y⃗ −Θa⃗)2

2η2

)
, (S2)

where we omit the distribution normalization.
For Bayesian inference, we invert the distribution using

the Bayes rule:

p(⃗a|y⃗) = p(y⃗|⃗a)p(⃗a)
p(y⃗)

, (S3)

where p(⃗a) is a prior distribution and p(y⃗) is a normal-
ization. The procedure of state estimation consists of
computing the Maximum A Posteriori (MAP) estimate,
which is typically done on log-likelihood:

ˆ⃗a = argmax
a⃗

(ln p(y⃗|⃗a) + ln p(⃗a)) , (S4)

where the normalization p(y⃗) was omitted as it doesn’t
depend on the inferred state a⃗. The solution of this
argmax problem requires knowing the functional form
of the prior that we discuss below.

B. Constructing the prior

In order to exploit the prior information of the data, we
need to assume a functional form of the prior distribution

over the coefficients a⃗. A simple form of this assumption
is to select a Gaussian prior of form:

pGauss(⃗a) ∝ exp

(
− a⃗TS−2a⃗

2

)
, (S5)

which poses that the system states are drawn from an
anisotropic Gaussian cloud where the variances along
each orthogonal direction are given by the elements of a
diagonal matrix S. We consider two choices for the prior:
a scaled identity matrix S = σIr for uniform variance
along all dimensions, and the matrix of singular values
of the training data S = Σr for hierarchically decreasing
variance of higher modes. Since in both cases all r ele-
ments are positive, the S matrix is invertible and thus
the prior is normalizable. In this case the prior functions
as a regularizer of state reconstruction. More complex
prior distributions can be constructed for training data
situated on curved manifolds [9].

C. Gaussian prior inference

For the Gaussian functional form of the prior
(Eqn. S5), we explicitly write out the log-likelihood as
follows:

ln p(⃗a|y⃗) = − 1

2η2
(y⃗ −Θa⃗)

T
(y⃗ −Θa⃗)− a⃗TS−2a⃗

2
, (S6)

which is a quadratic function of the unknown state a⃗.

The reconstruction is obtained by setting the a⃗-
derivative to zero:

∂ ln p(⃗a|y⃗)
∂a⃗

=
ΘT y⃗

η2
− ΘTΘa⃗

η2
− S−2a⃗ = 0, (S7)

which results in a simple linear equation for state re-
construction. Solving the equation, we get the following
prescription for reconstruction:

ˆ⃗a =

(
S−2 +

ΘTΘ

η2

)−1
ΘT y⃗

η2
= A−1Θ

T y⃗

η2
, (S8)

which combines the information from the prior and the
sensors. This reconstruction is linear and works for any
values of sensor measurements y⃗, and thus does not say
which set of sensors is better or worse and thus does not
guide our sensor selection.

The reconstruction depends on inverting the composite
matrix A, which might be ill-conditioned, meaning that
small errors or noise in sensor measurements y⃗ can result
in large error in the reconstructed state. We thus need
to connect the reconstruction uncertainty to the metrics
of matrix condition. Once such a metric is formulated,
sensor placement can be designed to optimize it.
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FIG. S1. Singular values of the five datasets used. Gray dashed line indicates the POD truncation threshold chosen for each
of the datasets.

S3. RECONSTRUCTION UNCERTAINTY
HEATMAP

The reconstruction formula (S8) gives the maximal
likelihood state, but the uncertainty around that state
is non-uniformly distributed. In order to quantify the
uncertainty, here we compute the uncertainty heatmap
across the whole domain of x⃗, given the sensor placement

C. We denote the sensor reading fluctuation as ∆⃗y, and
propagate that fluctuation to the state reconstruction:

∆⃗x = ΨrA
−1Θ

T

η2
∆⃗y. (S9)

The state fluctuation depends on the realization of
sensor noise, which needs to be averaged out. We can
compute the average covariance matrix between all the

entries of ∆⃗x by taking the outer product of the state
fluctuation with itself:
〈
∆⃗x∆⃗x

T
〉
= ΨrA

−1Θ
T

η2

〈
∆⃗y∆⃗y

T
〉 Θ

η2
A−1ΨT

r , (S10)

where the sensor reading covariance is
〈
∆⃗y∆⃗y

T
〉
= Ipη

2

by the assumption of uncorrelated noise. The whole state
covariance matrix is n × n, which characterizes uncer-
tainty correlations between different locations but does
not easily fit in computer memory for large state spaces.

We instead compute only the diagonal part of the co-
variance matrix, characterizing the level of uncertainty
in each pixel of the reconstructed state:

B ≡ΨrA
−1Θ

T

η2
(S11)

σi =η

√∑

j

(Bij)2, (S12)

where the matrixB has dimensions n×p and the resulting
vector σ⃗ contains the standard deviation of noise in each
pixel of the reconstructed image, plotted in Fig. 2b of the
main text.

S4. SENSOR ENERGY LANDSCAPE

A. Determinant decomposition

To enable systematic design of the sensor configura-
tion, we aim to maximize the determinant of the matrixA
in the reconstruction (S8). The matrix determinant cor-
responds to the volume of the confidence ellipsoid around
the maximal likelihood reconstruction. The choice to
maximize the determinant is known as D-optimal design
[10, 11], contrasted with A-optimal and E-optimal de-
signs (matrix trace and spectral gap, respectfully).

The general idea of the computation is to relate the
(log-) determinant of A to the locations of the sensors,
both in absolute space and with respect to each other.
The dependence of sensor placement on absolute coordi-
nates is equivalent to a 1-body interaction, or external
field. The dependence of sensor placement on relative
positions is equivalent to 2-body, 3-body, and higher or-
der sensor interactions. Below we derive the functional
form of interactions to all orders directly from the train-
ing data.

We start with transforming the determinant of A into
the determinant of a related matrix by using Sylvester’s
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determinant theorem:

detA = det

(
S−2 +

ΘTΘ

η2

)

= det
(
S−2

)
det

(
I + S2Θ

TΘ

η2

)

= det
(
S−2

)
det

(
I +

ΘS2ΘT

η2

)
, (S13)

which converts an r× r matrix into a p× p matrix, with
size directly related to the number of sensors.

To deepen the analogy with energy in physics, we iden-
tify the negative log-determinant with the Hamiltonian
of a sensor set γ:

H(γ) ≡ − ln det(A) = Eb − Tr ln

(
I +

ΘS2ΘT

η2

)
, (S14)

where we used the identity ln detX = tr lnX for any
generic matrix X.

We identify the expression within the logarithm with
an outer product of a matrix with itself ΘS2ΘT ≡ GγG

T
γ .

We term the row vectors g⃗i, i ∈ γ sensing vectors; the
matrix Gγ is then assembled from a subset of rows of
G ≡ ΨrS that correspond to chosen sensors i ∈ γ. The
goal of the subsequent derivation is to relate H(γ) to the
selected sensing vectors.

B. Expansion in η and resummation

The Hamiltonian expression (S14) requires taking a
matrix logarithm of a complex matrix expression. The
outer product GγG

T
γ is a positive-semidefinite matrix,

and thus the argument of the logarithm I + GγG
T
γ /η

2

is a positive-definite matrix ∀η, and the logarithm al-
ways exists. Additionally, for a sufficiently large value
of η the logarithm can be represented as an absolutely
and uniformly convergent series expansion in 1/η2. The
strategy of the derivation is thus as follows: (i) assume
η to be small, (ii) rewrite the energy function as a power
expansion in orders of 1/η2, (iii) perform series resumma-
tion into a different closed-form function, (iv) expand the
validity of the new function to arbitrary η via analytic
continuation.

C. Diagonal separation

We decompose the sensor-driven perturbation as a sum
of two matrices:

GγG
T
γ ≡ D +R, (S15)

where D contains only the diagonal elements of the outer
product, and R contains all non-diagonal elements. Since
GγG

T
γ is a positive-semidefinite matrix, its diagonalD in-

herits the same property. Importantly, the two matrices

in this decomposition do not commute [D,R] ̸= 0, and
thus the order of their product is important.
In terms of these newly-defined matrices the Hamilto-

nian takes the following shape:

H = Eb − Tr ln

(
I +

1

η2
(D +R)

)
, (S16)

where Eb ≡ −Tr ln
(
Σ−2

r

)
is the baseline energy indepen-

dent of noise and sensor choices. We then expand the
matrix in powers of 1/η2:

H(γ) = Eb +Tr

∞∑

k=1

η−2k(D +R)k
(−1)k
k

, (S17)

where we pulled one factor of (−1) outside of the sum.
The sum (D + R)k cannot be expanded as the simple
binomial formula, because the matrices don’t commute
[D,R] ̸= 0. Instead, the sum involves many products of
D,R in different order with order-dependent values.
We search for an expression for the Hamiltonian in the

following form:

H(γ) = Eb +
∞∑

s=0

fs(R), (S18)

where fs(R) is a function in which R occurs exactly s
times. We can get the form of fs by grouping terms with
the same number of occurrences of R in the full sum of
Eqn. S17. We treat separately the cases of s = 0 and
s > 0.
For s = 0, we want to gather the terms in which the

crosstalk matrix R never occurs. At each order in k,
there is exactly one such term Dk, which we can resum
for all orders of k with appropriate series prefactors:

f0 = Tr

∞∑

k=1

η−2kDk (−1)k
k

= −Tr ln

(
I +

1

η2
D

)
, (S19)

which always exists because D is positive-semidefinite.

D. Case s > 0

Now consider the terms for s > 0. Omitting the scalar
factors, an example would be Tr(DRDDRRDDRD)
where s = 4. Note that by the cyclic property of the
trace, the sequence can be shifted by repeatedly moving
terms from the right end to the left end of the product
without changing the value of the trace. Several different
sequences then contribute the same value to the energy,
and the number of such sequences needs to be carefully
computed. For the term of order k with s occurrences of

the matrix R there are

(
k
s

)
terms, but not all of them

have the same value.
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We can write each contributing term in the following
form:

Tr

(
s∏

i=1

RDli

)
, (S20)

so that each occurrence of R is followed by li copies of
D, where li can be zero or higher. The total number of
matrices D or R has to add up to k, which constraints
the number of D that can occur:

s∑

i=1

li = k − s ⇒ ls = k − s−
s−1∑

i=1

li, (S21)

thus summing over all terms at fixed order k involves only
s− 1 independent indices. The total number of terms of
order k is:

(
k
s

)
=

1

s!
k(k − 1) . . . (k − s+ 1), (S22)

where the factor k accounts for the k locations in the
sequence where the “first” occurrence of R can happen,
and the factor s! accounts for the redundant overcounting
of the choices of the “first”, “second”, and the following
occurrences of R, neither of which affect the value of
the trace. The remaining counting factors (k − 1), (k −
2), . . . count the terms with different values of the trace.
Putting these contributions together, we can write the
following expression for fs:

fs = Tr
∞∑

k=1

∑

{l}

s∏

i=1

η−2(1+li)
(
RDli

) k

s!

(−1)k
k

, (S23)

where the sum over possible sets of {l} obeys the con-
straint of Eqn. S21. The counting factor k in the numer-
ator cancels with the factor k from the series expansion
of the logarithm. We can now exchange the order of sum-
mation in k and li: instead of doing a constrained sum
in all li that add up to the same k, we treat them on the
same level.

Intuitively, the trace can be thought of as a ring that
consists of a sequence of D,R elements. A ring does not
have a beginning or the end, hence the factor k in the
number of rings with identical value of the trace. The
subsequent matrices R are separated by li matrices D.
Instead of counting all possible rings of the same length
k, we instead perform independent sums over the length
of all separators li, and the corresponding rings span all
possible lengths, similar to enumeration approaches in
heterogeneous self-assembly [12, 13]. We thus rewrite

the sum as follows:

(−1)k =(−1)s
s∏

i=1

(−1)li (S24)

fs =
(−1)s
s!

Tr
∑

{l}

s∏

i=1

η−2(1+li)R(−D)li

=
(−1)s
s!

Tr

s∏

i=1

∞∑

li=0

η−2(1+li)R(−D)li

=
(−1)s
s!

Tr
([

η−2R(I + η−2D)−1
]s)

, (S25)

where between the second and third lines we exchanged
the order of product and sum. The resulting sum in
powers of (−D) is an alternating sign geometric series
which converges for large η, and the resulting inversion
of the diagonal matrix (I + η−2D) is valid for any value
of η because D is positive semi-definite.
We can thus write the Hamiltonian exactly as follows:

H(γ) =Eb − Tr ln
(
I + η−2D

)

+
∞∑

s=1

(−1)s
s!

Tr
([

η−2R(I + η−2D)−1
]s)

, (S26)

which is a surprisingly concise form in terms of the sep-
arated diagonal and off-diagonal terms. If we were to
rewrite the matrix expression in index notation, the s = 0
term would have a single sum over all sensors, and each
further term s have a sum over s-sensor interactions.
Note that since R is non-diagonal and (I +D)−1 is diag-
onal, the s = 1 term is a trace of a non-diagonal matrix
and thus it always vanishes. Only the terms for higher
s > 1 have nonzero values. Since the matrix R does not
have a general sign-definite property, the resulting series
does not approximate energy either from above or from
below.

E. Energy landscapes

Here we rewrite the matrix expression of Eqn. S26 in
index notation to highlight the contributions of 1-sensor
and 2-sensor terms. First note the following index repre-
sentation based on Eqn. S15:

(D +R)ij = (GγG
T
γ )ij = g⃗i · g⃗j , (S27)

where we highlight the nature of the terms as dot prod-
ucts of sensing vectors g⃗i. The diagonal terms D corre-
spond to the dot product of each g⃗i with itself, while the
off-diagonal terms R correspond to the dot products with
different vectors.
We now need to convert the understanding of the

g⃗i vectors into the Ising-like Hamiltonian of shape in
Eqn. S14. We ignore the term Eb since it does not de-
pend on the noise or the choice of the sensors. We can
also drop the s = 1 term of the sum since it vanishes
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because of our matrix decomposition choices. We then
truncate the sum in s to only include the term s = 2, re-
sulting in the following expression for the 2-point energy :

H2pt(γ) ≡− Tr ln
(
I +D/η2

)

+
1

2
Tr
([

η−2R(I + η−2D)−1
]2)

, (S28)

which we need to transform into the index notation.
The first term has a trace of the log of a diagonal ma-

trix, and thus equals to the sum of the logs of the indi-
vidual entries:

−Tr ln
(
I + η−2D

)
=
∑

i∈γ

ln
(
1 +Di/η

2
)

=
∑

i∈γ

ln
(
1 + g⃗i · g⃗i/η2

)
, (S29)

which is a sum of 1-sensor terms.
The second term can be rewritten as follows:

1

2
Tr
([

η−2R(I + η−2D)−1
]2)

=
1

2

∑

ij∈γ

RijRji/η
4

(1 +Di/η2)(1 +Dj/η2)

=
1

2

∑

i ̸=j∈γ

(g⃗i · g⃗j)2/η4
(1 + g⃗i · g⃗i/η2)(1 + g⃗j · g⃗j/η2)

, (S30)

where we used the fact that R is non-diagonal to restrict
the sum to only run over the sensor pairs with indices
i ̸= j. For both the 1-sensor and the 2-sensor terms,
the sums run only over the sensors in the chosen set γ.
We can thus extend the computation of the terms to the
whole landscape that can be analyzed to pick the sensors
that optimize the energy. The resulting landscape has
the following form for all ij:

H2pt(γ) =
∑

i∈γ

hi +
∑

i ̸=j∈γ

Jij (S31)

hi ≡− ln
(
1 + g⃗i · g⃗i/η2

)
≤ 0 (S32)

Jij ≡
1

2

(g⃗i · g⃗j)2/η4
(1 + g⃗i · g⃗i/η2)(1 + g⃗j · g⃗j/η2)

≥ 0, (S33)

which is valid for any η.
What are the limits of this energy approximation? The

answer to this question is intimately tied to the sensor
placement algorithm. Generically, we expect the approx-
imation to work while g⃗i · g⃗j ≪ g⃗i · g⃗i, i.e. the correlation
between the sensing vectors is small compared with their
magnitude. For many systems it should be possible to
choose sensors i, j so that the terms Jij are small com-
pared to the terms hi. However, the number of crosstalk
terms Jij for p sensors grows as p2 with sensor number
p. While the individual terms might be small, with in-
creasing number of desired sensors both the number of
terms grows, and the algorithm runs out of low crosstalk
locations. Due to the combination of these reasons, we

expect the approximation to inevitably break down for
large number of sensors p. How large that number is
would depend on the properties of the training data and
the placement domain, and thus would need to be estab-
lished in numerical experiments.
We note that the higher-order terms would have the

shape similar to Jij in Eqn. S33, with a large number of
indices. Due to the construction of R as a non-diagonal
matrix, the terms where adjacent indices are identical
would correspond to the diagonal of R and thus vanish.
However, the indices can repeat in non-adjacent posi-

tions, e.g. at fourth order in J
(4)
ijij ̸= 0. The 2-point

expression Eqn. S31 is thus not exact even for placement
of 2 sensors, but is expected to be a good approximation.

S5. NOISE LIMITS

A. High and low noise limits

Here we consider the high noise and low noise limits of
the landscape (S32),(S33). In the high noise limit η ≫ 1
we get:

hi =O
(
η−2

)
(S34)

Jij =O
(
η−4

)
, (S35)

so the crosstalk falls off faster than the 1-sensor land-
scape. On one side, this stimulates putting more sensors
in the basin of lowest hi: since sensor noise is high, it
makes more sense to collect measurements in the loca-
tion of highest signal variance. On the other side, plac-
ing sensors close by breaks the approximation condition
g⃗i · g⃗j ≪ g⃗i · g⃗i, leading to a faster divergence between the
2-point energy and the true energy.
In the low noise limit η ≪ 1:

hi =2 ln(η)− ln(g⃗i · g⃗i) (S36)

Jij =
1

2

(g⃗i · g⃗j)2
(g⃗i · g⃗i)(g⃗j · g⃗j)

, (S37)

which approaches a constant, noise-independent shape
where neither the 1-point nor 2-point or higher order
interactions vanish for a generic sensor set. It should
still be possible to choose a small set of sensors with low
crosstalk and ensure that the 2-point energy is a good
approximation of the true energy. Importantly, in low
noise limit the sensor placement landscape does not de-
pend on the absolute magnitude of the prior, but does
depend on the its shape, i.e. uniform and non-uniform
priors would typically result in different landscapes and
thus different chosen sensor sets.

S6. SENSOR PLACEMENT METHODS

We consider and compare four algorithms of sensor
placement:
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FIG. S2. Comparison of sensor placement methods for the Olivetti faces dataset as measured by different energy expressions.
The rows (a) and (b) use the energy landscape at different values of noise η, the columns correspond to four different sensor
placement methods. The curves correspond to three energy formulae. Exact energy is evaluated by directly computing the
determinant in Eqn. (S14), ignoring the constant term Eb. 2-point energy is evaluated with Eqn. S28. 1-point energy is
evaluated by taking only the first term in Eqn. S28. The horizontal dashed line indicates H = 0, the vertical line indicates the
reconstruction rank p = r.

1. Random algorithm: sensors are placed uniformly
randomly within the signal domain without over-
lap.

2. 1-point algorithm: sensors are placed to greedily
minimize the 1-point energy hq without overlap.

3. 2-point algorithm: sensors are placed to greedily
minimize the 2-point energy following Eqn. 6 of
main text without overlap.

4. QR algorithm: sensors are placed via greedy QR
factorization of the Θr matrix with the PySensors
package [14].

The goal of all four methods is to minimize the sensor
configuration energy H(γ) by minimizing different prox-
ies (Fig. S2). Across all methods, exact energy is higher
than 1-point energy, indicating the importance of taking
sensor crosstalk into account. For the 2-point and QR
methods, the 2-point energy is a close approximation for
the exact energy up until the number of sensors reaches
the reconstruction rank p = r. For the 1-point method,
the discrepancy between the exact and 2-point energies

is the highest since placing the sensors without consider-
ing crosstalk results in strong spatial clustering and thus
large crosstalk. The 1-point method consequently has the
worst reconstruction RMSE (Fig. 3c of the main text).
The random placement method has performance better
than 1-point and worse than 2-point and QR.

S7. PRIOR SELECTION

The reconstruction formula (S8) and the sensor en-
ergy landscape both depend on the choice of the prior
variances S. We consider the prior to be Gaussian, but
it can have different patterns of variances along each di-
mension: either it is flat S = σI (we choose σ = 103), or
it follows the singular values of the dataset S = Σr. Since
there are two choices of prior for two different operations,
we need to consider four possible combinations.

Along with the prior-regularized reconstruction we
consider a direct reconstruction of the latent state vector
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FIG. S3. RMSE benchmark to select the combination of pri-
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choice of prior for reconstruction. Red curves correspond to
the reconstruction with the corresponding prior, while blue
curves correspond to the least-squares reconstruction. The
solid line and shaded region indicating average ± 1 standard
deviation across the test set.

ˆ⃗a that solves a linear least square problem:

ˆ⃗a = argmin
a⃗
∥y⃗ −Θa⃗∥, (S38)

which is well-defined for any number of sensors p.
We show the benchmark comparison in Fig. S3. The

least squares reconstruction is never better than regular-
ized reconstruction. In case of a flat prior used for regu-
larization, the RMSE curves are almost equivalent except
for the peak at p ∼ r that is suppressed by regularization.
Selection of sensors is better performed against a flat
prior (left column), leading to spread-out sampling and
thus lower RMSE in the oversampled regime p > r. Sen-
sors selected against a flat prior are sensitive to all modes
used in the reconstruction similar to the QR method [11],
while sensors selected against a POD prior are primarily
sensitive the first few modes. Reconstruction is better
performed with a POD prior (top row) since it leads to a
much smaller and less variable RMSE in the undersam-
pled regime p < r.

Following the conclusions of this benchmark test, we
pick sensors against a flat prior, yet reconstruct states

with the POD prior. This combination of methods is used
for all results reported in the main text and Figs. S4-S5.

S8. SENSOR PLACEMENT FOR OLIVETTI
FACES

Fig. S4 shows the sensor placement and reconstruction
for the Olivetti faces dataset. The sensors cluster around
the areas of high variability in human faces: eyes, nose,
lips, as well as corners of the image. In contrast, there
are almost no sensors on the forehead and cheeks which
vary very little between the images. This dataset also
suffers from reconstruction instability at r ∼ p caused by
the truncation of POD modes.

S9. SENSOR PLACEMENT FOR CYLINDER
FLOW

Fig. S5 shows the sensor placement and reconstruction
for the cylinder flow dataset. The sensors cluster primar-
ily in the wake behind the cylinder, with a few appearing
at the far edge of the image. This dataset does not suffer
from reconstruction instability at r ∼ p since the POD
modes were truncated at a very low singular value.

S10. EXHAUSTIVE SENSOR ENUMERATION

Figs. 3,S2 establish the near-equivalence of the 2-point
algorithm and the QR algorithm for sensor placement,
but both algorithms are approximate optimizers. For p

sensors in n-dimensional state space there exist

(
n
p

)
pos-

sible configurations that can be enumerated directly for
small n, p. In Figs. S6,S7 we enumerate all sensor con-
figurations for the GFF and RSS datasets, respectively,
which both have n = 25 and p ∈ [1, 8].
We assess the degree of optimality of the two algo-

rithms with three metrics. First, we compute the Spear-
man rank correlation ρ between the exact and approx-
imate 2-point energies, which indicates to what degree
minimizing the 2-point energy (moving down on the two-
dimensional histograms) is equivalent to minimizing the
true energy (moving left on the histograms). The Spear-
man correlation stays at the level of ρ > 0.99 to two
significant figures, showing that the exact energy is well
approximated by the 2-point energy for all sensor con-
figurations.
Second, we compute is efficiency Q, equal to the frac-

tion of the sensor configurations with exact energy equal
or higher than the configuration found by a particular
method. For the best solution found by brute force
search, efficiency is by definition Q = 100%. Across
both datasets, efficiency of the 2-point and QR meth-
ods reaches that level, indicating that both methods find
the exact optimal sensor configuration.
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FIG. S4. Reconstruction of Olivetti faces with data-driven sensor placement with r = 100 modes and noise η = 0.01. (a)
Maximal likelihood reconstruction. (b) Reconstruction uncertainty heatmap with white crosses marking the sensors selected by
the 2-point algorithm. (c) Root mean square error (RMSE) of state reconstruction, with solid line and shaded region indicating
average ± 1 standard deviation across the test set. The vertical dashed lines indicates the sensor counts for the reconstructions
shown in (a)-(b).

Third, we compute the energy difference between the
true minimum and the approximations (Figs. S6i,S7i)
that remains at the level of floating point number pre-
cision.

An important limitation of this comparison is the ar-
tificially small size of the GFF and RSS datasets. While
it is easy to generate larger datasets with the same soft-
ware, they would not be amenable to brute force enu-
meration. Within the empirical datasets such as the Sea

Surface Temperature, it is easy to place sensors with low
crosstalk (Fig. 1 of main text) since crosstalk typically
falls off with spatial distance between sensor locations.
For small datasets, there are no locations with large dis-
tance between them, and thus it is impossible to achieve
low crosstalk. We are looking forward to future meth-
ods for comparing the exact and approximately optimal
sensor configurations.
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FIG. S6. Comparison of sensor configurations between brute force search, 2-point algorithm, and QR methods for the GFF
dataset. (a-h) Two-dimensional histograms of the joint distribution in the exact energy (S14) and 2-point energy (S28) for
all configurations with sensor number p ∈ [1, 8]. The value of ρ corresponds to the Spearman correlation between the two
energies. The right and top panels show the marginal histogram in only one of the variables. The crosses indicate the sensor
configurations found by each of the three methods. (i) The discrepancy in energy between the absolute and approximate
minima found by the two methods. Lower exact energy corresponds to more sensors.
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