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When does entropy promote local organization?†

Andrei A. Klishin abc and Greg van Anders *abd

Crowded soft-matter and biological systems organize locally into preferred motifs. Locally-organized

motifs in soft systems can, paradoxically, arise from a drive to maximize overall system entropy.

Entropy-driven local order has been directly confirmed in model, synthetic colloidal systems, however

similar patterns of organization occur in crowded biological systems ranging from the contents of a cell

to collections of cells. In biological settings, and in soft matter more broadly, it is unclear whether

entropy generically promotes or inhibits local organization. Resolving this is difficult because entropic

effects are intrinsically collective, complicating efforts to isolate them. Here, we employ minimal models

that artificially restrict system entropy to show that entropy drives systems toward local organization,

even when the model system entropy is below reasonable physical bounds. By establishing this bound,

our results suggest that entropy generically promotes local organization in crowded soft and biological

systems of rigid objects.

1 Introduction

The mechanisms that drive behaviours in crowded molecular,
soft-material, and biological environments can be difficult to
infer. Difficulties arise not only because there are many com-
peting interaction types,1,2 but also because of the frequent and
ambiguous role played by entropy.2–10 Entropic effects are
inherently collective and emergent in nature, complicating
attempts to detect them. The detection of entropic effects in
soft matter has been aided, in colloids, by the identification
and measurement of directional entropic forces (DEFs).6 DEFs
drive crowded particles or bodies to undergo local organization.
Organization that occurs in order to maximize entropy is a
counterintuitive phenomenon, but it has been directly observed,
via DEFs, in several colloidal systems.11–17 Similar effects of
entropy-driven local organization have been observed in
pseudothermally-driven granular systems18 and in biological
contexts, e.g. in virus–membrane interactions,8 in diseases that
affect red blood cell rheology,3,9,19 and in models of crowded
membranes.20 The multiplicity of settings in which entropy is
implicated in the local organization of crowded entities raises
the question: are known settings isolated instances, each asso-
ciated with specific system features? Or, are known instances

examples of a widespread phenomenon? The answer depends on
understanding: when does entropy promote local organization?

Longstanding,21 general intuition that entropy is synonymous
with disorder would suggest that entropic effects should generically
act to inhibit rather than promote organization. In other words,
intuition suggests that the entropic promotion of local order should
be rare. However, similar intuition that entropy should favour global
disorder,22 meant that the existence of entropy-driven global order
was known for some time23–26 before it was understood to be a
widespread phenomenon in hard colloids6,27–32 that was not simply
a matter of global dense packing.33 The possibility that the entropic
promotion of local order is more widespread could be obviously
masked or limited by other competing interactions (see, e.g., ref. 34).
For local organization, as in the global order case, a more subtle and
fundamental question is: when is the phenomenon of entropy-
driven local organization masked or limited by the counterintuitive
and collective nature of entropy itself?

To understand the potential range of systems that can
manifest an entropic preference for local organization, it is impor-
tant to look for limitations on the phenomenon suggested by prior
work. Prior works have shown that a variety of selected, crowded
systems that possess a continuum ‘‘sea’’ of microstates have objects
that are driven to adopt preferred local arrangements.6 The fact that
entropy-driven local organization has been, thus far, observed in the
presence of continuum sea entropy suggests that a potential route to
eliminate or bound the effect is simply to construct an appropriate
model system that eliminates a large part of the entropy that drives
local organization.

Here, we attempt to bound the ubiquity of entropy-driven local
organization by artificially ‘‘subtracting’’ a substantial portion of
the entropy that leads to the emergence of local order in other

a Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
b Center for the Study of Complex Systems, University of Michigan, Ann Arbor,

MI 48109, USA
c John A. Paulson School of Engineering and Applied Sciences, Harvard University,

Cambridge, MA 02138, USA
d Department of Physics, Engineering Physics, and Astronomy, Queen’s University,

Kingston, ON K7L 3N6, Canada. E-mail: gva@queensu.ca

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sm02540e

Received 29th December 2019,
Accepted 8th June 2020

DOI: 10.1039/c9sm02540e

rsc.li/soft-matter-journal

Soft Matter

PAPER

Pu
bl

is
he

d 
on

 0
9 

Ju
ne

 2
02

0.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
M

ic
hi

ga
n 

L
ib

ra
ry

 o
n 

6/
29

/2
02

0 
3:

47
:1

0 
PM

. 

View Article Online
View Journal

http://orcid.org/0000-0002-5740-8520
http://orcid.org/0000-0002-9746-2484
http://crossmark.crossref.org/dialog/?doi=10.1039/c9sm02540e&domain=pdf&date_stamp=2020-06-20
http://rsc.li/soft-matter-journal
https://doi.org/10.1039/c9sm02540e
https://pubs.rsc.org/en/journals/journal/SM


Soft Matter This journal is©The Royal Society of Chemistry 2020

contexts (see Fig. 1). We model colloidal platelets, imposing a
severe restriction on their entropy in which we eliminate their
continuum of microstates by discretizing on a lattice. Using the
lattice discretization we compute entropic motif preferences (see
Fig. 2) by enumerating microstates via tensor networks. We find
that, albeit weakly, entropy promotes local organization in our
lattice model (see Fig. 3 and 4), even in the absence of a
continuum sea of microstates. By showing that entropy drives
local organization, even in models that have their entropy
artificially reduced below what would be expected in any realistic
model system, our results suggest that entropy promotes the
local organization of crowded, rigid bodies in soft matter
and biological systems in general. Finally, by comparing these
findings with known results in the literature we establish a

general ‘‘road map’’ (see Fig. 5) for systems to exhibit entropy-
driven local organization.

2 Model selection and setup

Determining if entropy generically promotes local organization in
soft systems requires a model that can provide a strong bound on
the phenomenon. To determine the type of model that will
provide such a bound, we briefly recall the circumstances under
which entropy is already known to promote local organization.

The phenomenon of entropy-driven local organization is
quantitatively well-understood in the context of DEFs, the
tendency of colloidal particles to adopt locally dense-packed
arrangements.6 DEFs were originally hypothesized in three-
dimensional crystals of hard, convex, anisotropic colloids with
face-to-face, tetrahedral local order.37 Since then, DEFs have
been identified in a broad range of other systems,6 including
crystals of other symmetry in three dimensions,6,11,12 plastic
crystals,13,14 two-dimensional systems and systems with competing
enthalpic interactions,15 non-convex particles,16 non-polyhedral
‘‘entropically patchy’’ particles,6,11 and systems with multiple
species of particles,6 including depletion interactions.3,38 Associated
ordering via entropy7 has been observed in many model29–32,39–45

and experimental4,5,36,46–50 systems. Apart from colloids, similar
entropic effects driving the local organization of crowded objects
have been hypothesized51 or reported in biophysical settings, e.g., in
the context of virus–cell-membrane interactions,8 or mechano-
sensitive membrane channel gating.20

To quantitatively classify systems known to exhibit entropic
ordering, we need to first distinguish two different classes of
particle interaction: intrinsic and emergent. Intrinsic interactions,
such as electrostatic interactions, exist between two particles
regardless of the presence of other particles, and can typically be
described by a term in the system’s microscopic Hamiltonian. In
contrast to intrinsic interactions, emergent interactions do not

Fig. 1 Examples of entropy-driven organization can be ordered by the amount of ‘‘sea particle’’ entropy, decreasing from left to right. Entropic ordering
in systems (a–c) has been demonstrated in prior works (green background shade), but it is unclear whether it persists all the way down to system (d) (gray
background shade). (a) Self-assembly of depletant-driven 3D lock-and-key junctions from silica spheres and dimpled spheres. Imaged by optical
microscopy, scale bar is 2 mm. Adapted from ref. 35. (b) Self-assembly of the 3D space filling Kelvin structure, corresponding to the body centred cubic
lattice, from truncated octahedral Ag nanocrystals. (left) Scanning electron microscopy micrograph, scale bar is 500 nm; (right) computer-generated
densest lattice. Adapted from ref. 36. (c) Self-assembly of 2D superlattices from lanthanide fluoride nanoplatelets. Imaged by transmission electron
microscopy, scale bar is 100 nm. Adapted from ref. 34 (d) this paper tests for local organization in hard, otherwise non-interacting, lattice dimers. Lattice
discretization means that our model has unphysically small sea entropy. This unphysical restriction is chosen so we can draw a strong bound on the
phenomenon of entropy-driven local organization. I.e., a drawing a strong bound requires pushing deep into the ‘‘gray area’’, both literally and figuratively.

Fig. 2 Entropy-driven local organization is signalled by locally dense-
packed dimer configurations (dark grey) having lower free energy (bDG 4 0)
compared to configurations in which one of the dimers is displaced
horizontally (green) or vertically (blue), or rotated (red) into a less densely-
packed motif.
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appear in the microscopic Hamiltonian. Instead, emergent inter-
actions between a selected pair of particles exist due to the
mediation of other, ‘‘sea’’ particles.6 Determining how sea particles
drive the interaction of a selected pair can be done in statistical
mechanics by integrating out the sea particles’ degrees freedom.
This integral leaves behind an emergent, effective interaction
potential between the remaining particle pair of interest. In liquid
state theory the effective interaction potential is known as the
potential of mean force;52 for anisotropic bodies, it is the potential
of mean force and torque (PMFT).6 Comparing between prior
PMFT computations, e.g. ref. 6 and 17, stronger DEFs, and there-
fore stronger entropic local ordering, exists when the sea particles’
entropy is larger.

The quantitatively clear cases of experimental systems exhibiting
entropy-driven local organization fall into three classes: colloid–
depletant mixtures,5,35 crowded suspensions of three-dimensional
colloidal objects,36 and crowded, two-dimensional arrange-
ments of platelets.34 Although all three classes of systems
exhibit DEFs, the interaction strength can range from BkBT
to \100kBT (where kB is Boltzmann’s constant and T is the
temperature). Interactions are strongest in colloid–depletant
mixtures. Though they are weaker in monodisperse colloids
in three dimensions, and weaker still in two dimensions,
effects are still measurable, and sufficient to produce a range
of interesting ordered behaviours.30,31,53,54

We aggregate the results from two- and three-dimensional
model systems, with and without depletants, and arrange them
in order of decreasing sea entropy in Fig. 1a–c, where images
are selected to indicate experiments that each represent a class
of similar experimental demonstrations. These results suggest
that systems with ‘‘lots of’’ entropy, regardless of the specific
system details, will manifest entropy-driven local organization
in the form of DEFs. To extinguish DEFs, in contrast, the results
suggest one should attempt to move rightward in Fig. 1 and
‘‘remove the entropy’’ that could be liberated by forming locally-
organized particle arrangements.

To establish a strong lower bound on where entropy can
drive local organization, here, we take the entropy removal approach
to its extreme and employ a model that we would expect to have less
configurational entropy than would exist in any realistic model of a
soft or biological system. If we find DEFs persist in a model that has
an unrealistically restricted number of particle arrangements, that
will imply that any realistic model (anywhere along the axis of
Fig. 1), which will necessarily exhibit more entropy, would be a case
in which entropy would promote local order.

Following this strategy, provided models remain well-defined,
unrealistic entropy restrictions are ‘‘features’’ rather than ‘‘bugs’’
of appropriate model selection for this study. Here, we model
colloidal platelets using a lattice discretization, taking the well-
known lattice dimer model as a case study.55 Each dimer occupies

Fig. 3 Landau–Gibbs free energy landscapes show entropy promotes crowded dimers to locally organize. Panels show free energy landscapes for
dimer insertion where horizontal and vertical axes correspond to lattice displacement, and colour corresponds to free energy bG. Top row panels
(a, c and e) show bG associated with inserting a horizontal dimer (site centres correspond to the location of the inserted horizontal dimer). Bottom row
panels (b, d and f) show the bG associated with inserting a vertical dimer (site centres correspond to the location of the inserted vertical dimer). Example
insertions are illustrated adjacent to panels (a) and (b). Columns correspond to increasing system fugacity z: z = 1.0 for (a and b), z = 3.0 for (c and d),
z - +N for (e and f). The deeper blue colours seen for lattice sites adjacent to the central, reference dimer in panels (a, c and e) signal the onset of
entropy-driven local organization with increasing density. I.e., compared to other lattice sites in each respective panel, and compared to the fugacity
matched panels for vertical insertion (a with b, c with d, e with f), locally dense-packed configurations exhibit the lowest bG. White regions in the plot
centres correspond to sterically excluded regions adjacent to the reference dimer. Corresponding densities r are indicated, as computed via eqn (2).
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two adjacent lattice sites; the dimers are prohibited from over-
lapping and that constitutes their only interaction. The lattice dimer
model was originally proposed in the 1930s to model adsorption
of diatomic molecules on flat surfaces,55 but has subsequently
been employed in the resonating valence bond model of super-
conductivity,56 and brane tilings in string theory.57

One potential pitfall of using a lattice discretization is that
whereas a general theorem58 precludes the existence of long-range
translational order in continuous two-dimensional systems,
discrete systems can and do (e.g., the Ising model) manifest
long-range order. Fortunately, for the purposes of model selection

for the present study, by leveraging the exact solution at complete
tiling,59–61 it has been shown that62 the model does not exhibit
long-range order. This fact indicates that the dimer model is
unphysical in a way facilitates drawing a strong entropy bound
(removing system entropy), but is not unphysical in a way that
would compromise the integrity of its choice in another important
respect (manifesting undesirable long-range order). For a brief
overview of other results on the dimer model, see the ESI.†

We consider the lattice dimer system on a rectangular
domain in the grand canonical ensemble (see Fig. 1d). The
ensemble is described by the grand partition function:

Z ¼
X
N;s

zN ; (1)

where fugacity z � ebm A [0,N) is the only free parameter in the
model. The fugacity is computed from inverse temperature b
and chemical potential m; N is the number of sites occupied by
dimers (double the number of inserted dimers); and the sum
runs over all configurations s in which no dimers overlap. To
determine the existence of entropy-driven local organization,
we compute the Landau–Gibbs (LG) free energy difference
(bDG) for dimers in motifs that are locally dense-packed versus
those that are not locally dense-packed (see Fig. 2). This LG free
energy computation in our lattice model discretizes the PMFT
computations done for continuous systems.6 As in continuous
systems, the development of lower LG free energy in locally
dense-packed configurations with increasing system density (fuga-
city) signals the existence of entropy-driven local organization.

We compute bDG using translation symmetry to fix the position
of one dimer at the centre of the lattice and enumerating dimer
configurations in which a dimer is inserted into one of the
adjacent positions, as illustrated in Fig. 2. In the computation,
the fixed dimer and the adjacent one form the motif of interest,
and all other dimers are treated as sea particles that we integrate
out. To perform this integration, we enumerate dimer configura-
tions numerically via tensor networks. Details of this computation
are described in Methods below.

3 Results

We study local organization by computing the Landau–Gibbs
free energy for motifs shown in Fig. 2. We study systems on

Fig. 4 Landau–Gibbs free energy of lattice dimer motifs shows an increasing
preference for local organization with increasing system density. The Landau–
Gibbs free energies bG associated with the four configurations described
above for a range of densities r. Round markers represent the values
computed with the tensor network method. Vertical and horizontal error bars
are from 3 replica computations, out of them only a few vertical error bars are
larger than marker size. Continuous curves are a linear interpolation to guide
the eye. The horizontal arrows at r = 100% are the exact values computed in
ref. 63. At any fixed density r the cost of move between two states bDG is
given by the difference between the two respective curves. The coloured
vertical bars on the right represent the free energy cost of the moves from
the paired up configuration (gray) to either of the other three (green, red,
blue) at r = 100%.

Fig. 5 When does entropy promote local organization? For entropy to promote local organization, systems must be thermal (e.g., ref. 6) or
pseudothermal (e.g., ref. 18) to have a meaningful notion of entropy; the constituent objects must be sufficiently crowded (e.g., ref. 6) for entropy to
favour local organization; and the objects must be sufficiently rigid so that the free energy cost associated with objects’ configurational entropy is low
compared to the cost associated with their conformational entropy (e.g., ref. 4). Under those circumstances, entropy will promote local order, but it may
not be manifest in experiment unless entropic effects are strong compared to competing interactions (e.g., ref. 34).
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rectangular domains of 9 � 10 sites with periodic boundary
conditions. Since the domain has 90 sites and each site can be
in 5 different states, this computation requires enumerating
590 E 1063 configurations and counting the ones where none of
the dimers overlap. The computation is controlled by fugacity z,
however it is more convenient to express results in terms of
density r, defined as

r(z) � 1 � p0
e(z), (2)

where p0
e(z) is the probability that a site of the domain is empty

in the absence of the reference dimer (unconstrained network).
At zero fugacity r(z = 0) = 0% and similarly at infinite fugacity
r(z -N) = 100%. After obtaining the density, we constrain the
central dimer in the horizontal orientation and compute the
free energy landscape for the whole domain. To do so, instead
of computing the full partition function, we compute a partial
sum, leaving out the degrees of freedom associated with dimers
arranged in motifs that correspond to the configurations of
interest shown in Fig. 2.

Fig. 3 shows that dense dimers develop entropically preferred
motifs with increasing density. The free energy landscapes for the
insertion of, separately, horizontal and vertical dimers are pre-
sented in Fig. 3 for a series of increasing densities. For horizontal
dimers, the landscape retains two two-fold symmetries. For
vertical dimers, the landscape develops a four-fold symmetry
since all the placements of two adjacent dimers with orthogonal
orientations are the same up to a reflection and rotation of the
whole system. As we increase the system density, the landscape
features sharpen, evident in the emergence of more saturated
blue and red colours from the grey background (e.g., compare
Fig. 3 panel a with c, and c with e). At the highest density of 100%
the free energy maxima and minima reach a finite value,
indicating that the DEFs never become infinitely strong. This
is expected because it is known that dimers do not have long
range order.59–61 The local order we do observe, along with the
visible oscillating decay of free energy with distance, are con-
sistent with expectations from prior work at perfect tiling.63

The free energy pattern shows a global free energy minimum
for pairing the reference horizontal dimer with an immediately
adjacent horizontal dimer. This horizontal pairing is a pre-
ferred local structure because moving the second dimer left or
right, or away from the reference dimer, or rotating it ortho-
gonally all cost free energy.

Having identified both the lowest free energy motif and the
immediately adjacent competing motifs, we can further quantify
how the strength of DEFs emerges with growing dimer density.
We consider three possible symmetry-distinct dimer moves away
from the global free energy minimum, as illustrated with differ-
ent colours in Fig. 2: a horizontal shift, a rotation, and a vertical
shift. The density-dependent free energies of dimer placement in
each configuration are shown in Fig. 4. The free-energy cost of a
move corresponds to the difference between the curves. Note that
we avoided computing the curve at low density, since for a
domain of 90 sites, inserting a dimer that occupies 2 sites is
equivalent to a step in density of almost 2%, thus limiting our
density resolution.

Among our results, the largest observed free energy difference
bDG is around 0.91 for the horizontal shift at density 100% (green
bar in Fig. 4). Does this value of bDG signify strong DEFs? Note
that unlike common Landau free energy computations,64 here
bDG is not scaled by system size and represents the cost of
moving a single dimer. One way to interpret this cost is by
considering the assembly of a dense-packed dimer crystal in
presence of noise. Because of this noise, the ratio of ‘‘correctly’’
placed dimers (dense-packed) to ‘‘incorrectly’’ placed ones (with
horizontal shift) is roughly ebDG B 2.5 : 1. For every two correctly
placed dimers there would be roughly one defect, thus preventing
crystallization and formation of any long-range order, consistent
with previous results.62

DEFs in lattice dimers clearly exist, but can they be directly
compared with DEFs in other systems? The most obvious com-
parison system is rectangular platelets of 2 : 1 aspect ratio with
continuous rotations and translations. Such platelets have been
considered as a special case in ref. 16 and yielded (canonical) DEF
strength of bF E 2. The fact that we observe weaker DEFs in our
model system of lattice dimers is consistent with the expectation that
putting rectangular platelets on a lattice would reduce the entropy
and weaken DEFs. However, we find that although the lattice
unreasonably restricts system entropy below what we would expect
in a real physical system, system entropy still promotes local order.

4 Discussion

The longstanding,21 intuitive association of entropy and dis-
order suggests that entropy should, in general, act to inhibit
organization in soft matter and biological systems. However,
the intuition that entropy inhibits organization has been shown
to fail in several remarkable counter examples.6,7 The need to
understand the pattern underlying those counter examples raises
the question posed by our title: when does entropy promote local
organization?

Based on the observation of weaker patterns of local organization
with decreasing amounts of sea entropy, here we sought to establish
a bound by extremizing sea entropy. Fig. 4 shows that even with
unphysically stringent restrictions imposed by the model we con-
sidered here, i.e., that it that lacks a continuum of sea entropy,
entropy still promoted, rather than inhibited, local organization.

Collectively, the results in the literature and the results
presented here show that entropy promotes local order over
the entire range shown in Fig. 1. This range spans physically
reasonable amounts of sea entropy and extends beyond.
This range is surprising because although early, and striking,
examples of entropic local organization involved depletion
interactions,3 where sea entropy is particularly large, depletion
is not necessary for local organization. Our results further show
that any physically reasonable amount (and even less!) of
sea entropy is enough configurational entropy to promote local
organization. That means an answer to the question of when
entropy promotes local organization does not involve sea entropy.

If the amount of sea entropy is not a limiting factor for the
entropic promotion of local organization, what is? Experiments
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indicate both synthetic (e.g., ref. 47) and biological (e.g., ref. 9)
systems exhibit the entropic promotion of local organization.
However, work on colloids6 indicates that some form of crowding
of objects is required, either from the existence of depletion
interactions3 of via ‘‘self-depletion’’ of the constituent objects.6

In addition to crowding, limitations on entropic local organization
could arise from a lack of thermalization, from system scale,
or from system rigidity. Whether these considerations impose
limitations on entropy-driven local organization can inferred
from the existing experimental literature.

Thermalization

Colloidal systems with clearly quantifiable entropic local orga-
nization, e.g., ref. 6, manifest those effects in systems in thermal
equilibrium. Since entropy is most clearly defined in thermal
equilibrium, that appears to suggest that entropy-driven local order
depends fundamentally on the existence of thermodynamic equili-
brium. However, the hallmarks of entropy-driven local organization
have been demonstrated in experiments performed on pseudo-
thermally-driven granular systems.18 Those experiments indicate
that a pseudothermal approximation of configurational entropy is
to manifest entropically-driven local organization.

Scale

Many physical phenomena are system scale dependent, and so
scale could constrain the entropic promotion of local organization.
Colloidal systems manifest the most clearly identifiable instances
of entropic local organization for particles in the range of
hundreds of nanometres, e.g., ref. 47. However, similar effects
exist for particles toward the nanometre range, e.g., ref. 34, and
for granular systems with particles that are millimetres in size.18

The roughly five orders of magnitude in particle scale between
these systems strongly suggests that scale does not restrict
entropy-driven local organization.

Rigidity

Entropic local organization has been demonstrated in systems
of rigid objects, e.g., in hard colloids.6 However, work by Dogic
and collaborators suggests that the rigidity of constituent
objects is a limiting factor.4,65,66 Dogic et al. demonstrated
the entropy-driven assembly, via depletion, of rod-shaped virus
capsids into non-amphiphilic membranes. The assembled
membranes in Dogic’s experiments were themselves objects
that could undergo hierarchical entropy-driven assembly into
rouleaux, columnar structures also observed in red blood cell
aggregates.3 However, hierarchical rouleaux assembly was only
observed if the depletion interactions driving the assembly
resulted in high membrane tension. At low membrane tension,
the large conformational entropy of the membranes inhibited
their organization into rouleaux. In the context of the present
discussion, Dogic et al.’s results suggest that entropy inhibits
local organization if the objects undergoing the local organization
would lose internal, conformational entropy through steric
restriction imposed by local organization. This interpretation
also accords with a recent study10 on the effects of the rigidity
and shape of hydrocarbon molecules in self-assembly. There, it

was shown that conformational entropy in linear alkanes inhibits
molecular self-assembly compared with rigid diamondoid
molecules. Together, the virus-capsid and alkane results, taken
in contrast with the results here and elsewhere for rigid colloids,
indicate that in crowded systems there is a competition between
the entropic promotion of local organization by configurational
entropy and the inhibition of local organization by conformational
entropy.

The considerations of thermalization, scale, and rigidity
lead us to propose Fig. 5 as an answer to the question of when
does entropy promote local organization? In addition to the
criteria regarding configurational entropy, crowding, and rigid-
ity that are included in Fig. 5, it is also noteworthy that
seemingly relevant criteria, e.g., depletion interactions or system
scale, turn out to be ‘‘non-factors’’ for the entropic promotion of
local organization.

Although, Fig. 5 serves as a guide for the circumstances under
which entropy should be expected to promote local organization,
there is also the question of when entropically favoured motifs will
manifest in experiment. For entropic motifs to be manifest, the
strength of the entropically preferred motifs must be sufficiently
strong compared to non-entropic interactions. We indicate this
accordingly in Fig. 5. Ref. 34 reports an example of this, and ref. 17
reports an approach to estimate the strength of competing inter-
actions required to overwhelm entropic forces.

The minimal restrictions on entropic local organization
arising only from configurational entropy, crowding, rigidity,
and competing interactions (Fig. 5), and the manifestation of
these effects across scales ranging from nanometres to milli-
metres suggest the potential for exploiting the entropic organization
in a broad range of molecular, soft matter, granular, and biological
contexts.4,5,8,9,18,20,36,46,47,67

5 Methods
5.1 Partition function setup

We treated the lattice dimer model numerically as a spin-like
model on a square lattice. Each lattice site i can be in one of five
states si, either the site is empty e, or it is occupied by the left l,
right r, top t, or bottom b part of a dimer. The latter four states
correspond to site occupation with half a dimer so that fixing a
spin state on any site constrains the spin on neighbouring sites.
Horizontally, for example, a site to the right of an l state (i.e., a
left half-dimer) must be occupied by an r state (i.e., a right half-
dimer) and cannot be occupied by an l, t, b, or e state. Similar
constraints exist for vertical neighbours. We penalize violating
the set of these neighbour constraints with an infinite energy
penalty in a local Hamiltonian H, which is otherwise zero. We
treat the dimer model in the grand canonical ensemble with
partition function Z given by

Z ¼
X
fsg

e�bHðfsgÞ
Y
i

f sið Þ; (3)

where b is the inverse temperature, and f (si) = 1 for empty sites
(si = e) and ebm (with m being the chemical potential) otherwise.
In this form, the problem of describing the physics of lattice
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dimer configurations reduces to enumerating arrangements of
‘‘spins’’ that satisfy the appropriate constraints.

To enumerate arrangements of spins, we extend recently-
proposed68,69 methods that attack solution counting problems
with tensor networks. Tensor networks derived from an early
graphical notation70 are now used in quantum condensed
matter systems,71–73 quantum chemistry,74 the renormalization
of classical lattice models,75,76 machine learning,77 and numerical
linear algebra.78–80 To apply tensor network methods here, we first
note that because the model Hamiltonian H has only zero or
infinite entries, the corresponding Boltzmann factors e�bH are 1 or
zero, respectively. The Boltzmann factors for horizontally and

vertically adjacent spins can be combined into horizontal Th
sisj

� �

and vertical Tv
sisj

� �
transfer matrices64 that encode the constraints

against ‘‘breaking’’ dimers (explicit forms are given in ESI†). In
terms of Th and Tv the partition function takes the form

Z ¼
X
fsg

Y
hijih

Th
sisj

Y
hijiv

Tv
sisj

Y
i

f sið Þ; (4)

where h ih,v denotes horizontal and vertical nearest neighbour
pairs. In this form, Z is contraction of a tensor network with
transfer matrices Th,v taken as rank-2 tensors and f as a rank-1
tensor. Apart from those three types of tensors, we include a fourth
type: site tensors d. Each site tensor is a multidimensional
Kronecker (identity) tensor that connects to all the neighbours in
an appropriate order (see Fig. 6). The site tensors only contribute
multiplicative factors of 1 to the sum (4) and thus do not change
the result. The raw value of the partition function at r = 100%
density is directly related to a measure of dimer configurations, the
so-called ‘‘molecular freedom’’, for which an exact analytic value is
known.59–61 We use the known molecular freedom to validate our
computational method (see ESI†).

5.2 Landau–Gibbs free energy evaluation

Eqn (4) gives a recipe for computing the partition function, but
we aim to study local organization by comparing dimer motifs
by their respective Landau–Gibbs free energies. Lower LG free
energy in locally dense-packed configurations with increasing sys-
tem density (fugacity) signifies the existence of entropically favoured
motifs. Disfavoured motifs are signified by higher free energy. The
LG free energy quantifies the probability of finding a dimer in a
specific motif, as opposed to finding a dimer by itself (bare):

bG = bGmotif � bGbare, (5)

where Gbare is the free energy of finding a dimer in a given
orientation by itself, which depends on the fugacity z = ebm but not
on the dimer position. Gmotif is the free energy of finding a dimer in
a given motif with respect to a fixed reference dimer, which thus
depends on both the fugacity and the relative position of the dimers.
The two free energies are computed as following:

e�bGbareðsÞ /
X

fsg� sx;yf g

Y
hijih

Th
sisj

Y
hijiv

Tv
sisj

Y
i

f sið Þ; (6)

e�bGmotif ðs;x;yÞ /
X

fsg� sx;yf g

Y
hijih

Th
sisj

Y
hijiv

Tv
sisj

Y
i

f sið ÞdðrefÞ; (7)

where x, y is the site for which we are computing the free energy and
thus we exclude its spin variable sx,y from summation. We fix the
reference dimer in a specific state with the constraint d(ref). Each
free energy is normalized so that the exponential factors for all sx,y

add up to 1. The expressions (6) and (7) can be both shown
succinctly using the graphic notation and evaluated numerically
as tensor network contractions (see ESI†).

We perform the numerical tensor network contractions with
PyTNR, an open-source, general purpose tensor-network contraction
code.81,82 PyTNR contracts networks using singular value decom-
position (SVD), as a numerical approximation. This approximation
allows the counting of huge numbers of states to remain tractable
at the expense of applying SVD to intermediate tensors in the
contraction procedure in stochastic order. To control for the statis-
tical errors resulting from stochasticity we computed at least three
replicas at each statepoint. To control for the systematic error of
finite system size we performed finite-size validation against the
known correlation functions at r = 100% density (see ESI†). The
largest networks we contracted correspond to 15 � 16 = 240 lattice
sites, and thus enumerate 5240 E O(10167) distinct lattice spin states.

To reconstruct the full LG free energy landscapes in Fig. 3,
we compute a large number of motif free energies Gmotif(sm) for
different target sites m. We reduce the number of required
computations with two strategies. First, we take advantage of
the global four-fold mirror symmetry of the system and the
local translational symmetry of the sites (see ESI†). Second, we
create an additional readout tensor network that implements
efficient multi-marginalizing, i.e. computation of 1-point marginals
from a many-point distribution (see ESI†).‡

Fig. 6 Lattice spin partition functions can be expressed in terms of tensor
networks. Here, for illustration purposes, we show a 4 � 5 lattice where
lattice sites correspond to identity tensors (dsisjsk. . ., brown circles). Cou-
pling tensors, generalizations of transfer matrices, couple spins on verti-
cally (Tv

sisj
purple arrows) or horizontally (Th

sisj
purple tails) neighbouring

sites. Both types of coupling tensors are asymmetric in their indices,
therefore the direction of arrows and tails is important. The fugacity tensor
(fsi

, brown square), promotes the insertion of dimers. ‘‘Legs’’ on tensor
symbols correspond to spin indices and connected legs correspond to
summation, or contraction, of the network, as in eqn (4).

‡ We learned about multi-marginalizing from A. S. Jermyn who also implemented
it as a part of the PyTNR package.

Soft Matter Paper

Pu
bl

is
he

d 
on

 0
9 

Ju
ne

 2
02

0.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
M

ic
hi

ga
n 

L
ib

ra
ry

 o
n 

6/
29

/2
02

0 
3:

47
:1

0 
PM

. 
View Article Online

https://doi.org/10.1039/c9sm02540e


Soft Matter This journal is©The Royal Society of Chemistry 2020

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

GvA acknowledges the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC). We thank
A. S. Jermyn for technical support of the PyTNR package, as well
as S. Boettcher, M. P. Brenner, C. R. Doering, C. X. Du, and
H. Liu, for stimulating discussions.

Notes and references

1 J. N. Israelachvili, Intermolecular and Surface Forces,
Academic Press, Burlington, MA, 3rd edn, 2011.

2 V. N. Manoharan, Science, 2015, 349, 942.
3 H. N. W. Lekkerkerker and R. Tuinier, Colloids and the

Depletion Interaction, Springer, Dordrecht, 2011.
4 E. Barry and Z. Dogic, Proc. Natl. Acad. Sci. U. S. A., 2010,

107, 10348–10353.
5 K. L. Young, M. R. Jones, J. Zhang, R. J. Macfarlane,

R. Esquivel-Sirvent, R. J. Nap, J. Wu, G. C. Schatz, B. Lee
and C. A. Mirkin, Proc. Natl. Acad. Sci. U. S. A., 2012, 109,
2240–2245.

6 G. van Anders, D. Klotsa, N. K. Ahmed, M. Engel and S. C.
Glotzer, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, E4812–E4821.

7 D. Frenkel, Nat. Mater., 2015, 14, 9–12.
8 J. J. Madsen, J. M. Grime, J. S. Rossman and G. A. Voth, Proc.

Natl. Acad. Sci. U. S. A., 2018, 115, E8595–E8603.
9 C. Wagner, P. Steffen and S. Svetina, C. R. Phys., 2013, 14,

459–469.
10 E. M. King, M. A. Gebbie and N. A. Melosh, Langmuir, 2019,

35, 16062–16069.
11 G. van Anders, N. K. Ahmed, R. Smith, M. Engel and

S. C. Glotzer, ACS Nano, 2014, 8, 931–940.
12 Y. Geng, G. van Anders, P. M. Dodd, J. Dshemuchadse and

S. C. Glotzer, Sci. Adv., 2019, 5, eaaw0514.
13 W. Shen, J. Antonaglia, J. A. Anderson, M. Engel, G. van

Anders and S. C. Glotzer, Soft Matter, 2019, 15, 2571–2579.
14 A. S. Karas, J. Dshemuchadse, G. van Anders and S. C.

Glotzer, Soft Matter, 2019, 15, 5380–5389.
15 J. A. Millan, D. Ortiz, G. van Anders and S. C. Glotzer, ACS

Nano, 2014, 8, 2918–2928.
16 E. S. Harper, R. L. Marson, J. A. Anderson, G. van Anders

and S. C. Glotzer, Soft Matter, 2015, 11, 7250–7256.
17 E. S. Harper, G. van Anders and S. C. Glotzer, Proc. Natl.

Acad. Sci. U. S. A., 2019, 116, 16703–16710.
18 L. Walsh and N. Menon, J. Stat. Mech.: Theory Exp., 2016,

083302.
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