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S1. SUPPLEMENTARY METHODS

A. Evaluation of Outcomes and Variability

The importance of the partition function Z is in that it con-
tains all information about statistical averages of design ob-
jectives. The average outcome for a design objective is given
by

〈Oi〉 =
∑
σ

Oi(σ)pσ =
1

Z
∑
σ

Oi(σ)e−
∑
j λjOj(σ)

=− ∂

∂λi
lnZ . (S1)

(S2)

The variability in an outcome can be evaluated by further dif-
ferentiation
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The variability in an outcome is directly related to the sensi-
tivity of the design objective average to design pressures:

〈
O2
i

〉
c

= − ∂

∂λi
〈Oi〉 . (S4)

B. Case 1: Computation Details

Two units at separated by distances ∆x,∆y along the two
axes can be joined with multiple routings of the same Man-
hattan length ∆x + ∆y. Since the routing consists of a fixed
number of vertical and horizontal steps which can be taken
in any order, the number of possible routings is given by the
binomial coefficient

n(∆x,∆y) =

(
∆x+ ∆y

∆x

)
=

(∆x+ ∆y)!

∆x!∆y!
. (S5)

The number of paths n(∆x,∆y) grows rapidly with path
length, thus creating the entropic stress pushing the units
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apart. The partition function (Eq. 2 in main text) is a sum
over all candidate designs. We separate that sum into sum-
ming over possible unit positions and possible paths. For two
units this becomes

Z =
∑
σ

e−Eσ/T =
∑

x1,y1,x2,y2

e−Eσ/Tnσ(∆x,∆y) . (S6)

To understand the origin of Tcrit more intuitively, we can use
an approximation. If we assume large separations ∆x ∼
∆y � 1, Stirling’s approximation for the binomial coefficient
gives

lnn(x, y) ≈ x ln
(

1 +
y

x

)
+ y ln

(
1 +

x

y

)
≈ (x+ y) ln 2

(S7)
Substituting this into the partition function gives

Z =
∑
x1,y1

∑
∆x,∆y

exp

((
ln 2− C

T

)
(∆x+ ∆y)

)
, (S8)

where the unit separation ∆x,∆y ∈ [0, L]. Because the
contributions that correspond to energy and entropy have the
same form, depending on the sign of (ln 2 − C/T ), this is
either a descending or ascending finite geometric series. In
either case it evaluates to a finite value that changes rapidly
near T = Tcrit = C

ln 2 . The average cost and the cost vari-
ance/susceptibility are evaluated with straightforward deriva-
tives with respect to λ1 = 1/T .

C. Case 2: Computation Details

We consider two types of routings between the two units:
through the bulkhead and around the bulkhead. Since they are
mutually exclusive, the partition function can be computed as

Z = Zte
−γ + Zr , (S9)

with the two component partition functions being

Zt =
∑

σ through

exp(−E(σ)/T ) (S10)

Zr =
∑

σ around

exp(−E(σ)/T ) . (S11)
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The fraction of bulkhead penetrations, 〈B〉, is a design objec-
tive conjugate to bulkhead penalty, thus it can be evaluated via
a partial derivative

〈B〉 = − ∂

∂γ
lnZ =

Zte
−γ

Zte−γ + Zr
. (S12)

Free energy landscapes F (x, y) are computed via Eq. 8 of
main text with the “design feature” S(x, y) evaluated as fol-
lows, respectively for unit and routing free energies:

Sunit(x, y) =

{
1, there is a unit at (x, y)

0, otherwise
(S13)

Sroute(x, y) =

{
1, there is a routing through (x, y)

0, otherwise
(S14)

The vertical node correlation is defined the usual way with
averages taken in the sense of Eq. 7 of main text:

cor(y1, y2) =
〈y1y2〉c√
〈y2

1〉c 〈y2
2〉c

(S15)

S2. SUPPLEMENTARY RESULTS

For the inhomogeneous embedding (Case 2) unit positions
explicitly couple to the geometric features of the embedding
space, as shown in Fig. 4 (main text) for a system size of
20 × 20. SI Figs. S1, S2, and S3 show identical computa-
tions performed for a series of other system sizes. Fig. S1
depicts a system size of 20×40. Fig. S2 depicts a system size
of 40× 12. Fig. S3 depicts a system size of 20× 20, with the
bulkhead off-center.
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FIG. S1. Pareto frontiers (Landau free energy isosurfaces) for unit and routing locations for spatially inhomogeneous subsystem embeddings
(Case 2). System size is 20 × 40 (width and height), bulkhead is positioned horizontally in the center and extends up to height h = 35.
Normalization for free energies is identical to that of Fig. 4 of main text. Organization of rows and columns of (T, γ) parameters is also
identical to that of Fig. 4 of main text.
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FIG. S2. Pareto frontiers (Landau free energy isosurfaces) for unit and routing locations for spatially inhomogeneous subsystem embeddings
(Case 2). System size is 40 × 12 (width and height), bulkhead is positioned horizontally in the center and extends up to height h = 10.
Normalization for free energies is identical to that of Fig. 4 of main text. First column corresponds to γ = 8, second to γ = 2. Four rows of
graph pairs correspond to cost tolerances of T = 0.5, 1.0, Tcrit, 2.0, respectively.
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FIG. S3. Pareto frontiers (Landau free energy isosurfaces) for unit and routing locations for spatially inhomogeneous subsystem embeddings
(Case 2). System size is identical to that in Fig. 4 of main text at 20× 20 (width and height), however bulkhead is positioned horizontally off
center at xbh = 5 and extends to the same height h = 17 as in Fig. 4 of main text. Normalization for free energies is identical to that of Fig. 4
of main text. Organization of rows and columns of (T, γ) parameters is also identical to that of Fig. 4 of main text.


