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Precisely how humans process relational patterns of information in knowledge, lan-
guage, music, and society is not well understood. Prior work in the field of statistical
learning has demonstrated that humans process such information by building internal
models of the underlying network structure. However, these mental maps are often
inaccurate due to limitations in human information processing. The existence of such
limitations raises clear questions: Given a target network that one wishes for a human
to learn, what network should one present to the human? Should one simply present
the target network as-is, or should one emphasize certain parts of the network to
proactively mitigate expected errors in learning? To investigate these questions, we study
the optimization of network learnability in a computational model of human learning.
Evaluating an array of synthetic and real-world networks, we find that learnability is
enhanced by reinforcing connections within modules or clusters. In contrast, when
networks contain significant core–periphery structure, we find that learnability is best
optimized by reinforcing peripheral edges between low-degree nodes. Overall, our
findings suggest that the accuracy of human network learning can be systematically
enhanced by targeted emphasis and de-emphasis of prescribed sectors of information.

graph learning | maximum entropy | complex networks

From a young age, humans demonstrate the capacity to learn the relationships between
concepts (1–3). During the learning process, humans are exposed to discrete chunks
of information that combine and interconnect to form cognitive maps that can be
represented as complex networks (4–9). These chunks of information often appear in a
natural sequential order, such as words in language, notes in music, and abstract concepts
in stories and classroom lectures (10–14). Further, these sequences are encoded in the brain
as networks, with links between items reflecting observed transitions (see refs. 15–18 for
empirical studies and ref. 19 for a recent review). Broadly, the fact that many different
types of information exhibit temporal order (and therefore network structure) motivates
investigations into the processes that underlie the human learning of transition networks
(8, 19, 20).

To understand the network-learning process, recent studies have investigated how hu-
mans internally construct abstract representations of associations (21–23). Using a variety
of approaches, from computational models to artificial neural networks, such studies
have consistently found that the mind builds network representations by integrating
information over time. Such integration enables humans to compress exact sequences
of experienced events into broader, but less precise, representations of context (24).
These mental representations allow learners to make better generalizations about new
information, at the cost of accuracy (22). Here, we focus on one particular modeling
approach that accounts for the temporal integration and inaccuracies inherent in human
learning. In particular, we build upon a maximum-entropy model, which posits that the
mind learns a network representation of the world in a manner guided by a tradeoff
between accuracy and complexity (21, 25). Specifically, in order to conserve mental
resources, humans will tend to reduce the complexity of their representations at the cost
of accuracy by allowing for errors during the learning process.

While inaccuracies in human learning can aid flexibility across contexts, they present
fundamental obstacles for the human comprehension of transition networks. Thus, a
clear question emerges: What strategies should be employed to most effectively com-
municate the structure of a network to an inaccurate human learner? Prior studies of
animal communication and behavior have demonstrated the utility of exaggerating the
presentation of certain signals to receivers in offsetting erroneous information processing
(26, 27). Similarly, one could imagine that, by emphasizing some features of a network
over others, one may be able to correct for errors in human learning. Such an approach
of targeted modulation of emphasis may be helpful not only in learning a whole network,
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but also in optimally learning particularly challenging parts of a
network. In fact, humans show consistent difficulties in learning
certain motifs in networks, such as the connections between
modules (21, 28–30). Taken together, these observations suggest
that disproportionately weighting specific network features that
are difficult to learn may facilitate human network learning.

Mathematical Methods

To study the optimization of network learnability, we first re-
quire a model describing how humans learn networks. Following
ref. 21, we write down an analytic model that captures a wide
range of human behaviors observed in network-learning exper-
iments. Specifically, we consider a transition probability matrix
A ∈ R

n×n that describes random walks on the observed network,
whereAij represents the probability of a transition to node j when
starting from node i . Then, after observing a sufficient number of
random walks, the human’s internal representation of the network
converges to the following analytic form:

f (A) = (1− e−β)A(I − e−βA)−1, [1]

where the single parameter β reflects the accuracy of the human
learner. In the limit β → 0, the learned network structure f (A) is
a fully connected network with uniform edge weights and, hence,
bears no resemblance to the actual network A. In contrast, in
the limit β →∞, the learning process is free of errors, and the
learned network structure f (A) is an exact replica of the actual
network A.

The following question then arises: Given a transition network
A and a human learner with accuracy β, what is the optimal
input transition network Ain = A∗ that, when presented to a
human learner, results in a perceived network structure f (Ain)
that most closely matches the true structure A? In general, there
is no reason to presume that it is optimal to present the learner
with the true network (such that A∗ = A). Indeed, teaching
and other forms of communication often involve the purposeful
emphasis or exaggeration of some pieces of information over
others (31–33). Thus, it is possible that modulating emphasis
on certain network features, in a precise and targeted manner
that serves to counteract natural biases or expected errors, might
enhance learnability. Moreover, optimal emphasis strategies are
likely to vary from person to person, depending critically upon
the accuracy β of the human’s learning process.

One natural approach to answering this generic question is to
find the input matrix Ain such that the learned representation
f (Ain) is equal to the target network A. From Eq. 1, one can
derive for a given β an analytical form for the input Ain = A∗

such that f (A∗) = A holds exactly. While this approach is math-
ematically elegant, it has limited application to real-world scenar-
ios because the resulting A∗ often contains negative entries or
requires inverting a singular matrix and is, hence, an ill-defined
transition matrix (SI Appendix, Fig. S1). To overcome this hurdle,
one can instead characterize how a perceived network structure
f (Ain) diverges from some true structure A using the Kullback–
Leibler divergence DKL(A||f (Ain)). We choose the Kullback–
Leibler divergence for our analyses because of its connections with
information theory and its usage in previous papers that study
this model of human network learning (20, 21, 25). In particular,
the Kullback–Leibler divergence, as used in this context, can be
interpreted as a measure of the inefficiency of the learned repre-
sentation. To determine the optimal input Ain = A∗ such that
A∗ is a well-defined transition matrix, we determine a weighted
network with adjacency matrix Gin such that the corresponding

transition matrix Ain minimizes the Kullback–Leibler divergence
DKL(A||f (Ain)) between the learned structure f (Ain) and the
true structureA. Practically, we implement this strategy using dual
annealing, which is a powerful and common method for bounded
optimization (34–36). For simplicity, we restrict our analysis to
undirected networks Gin.

For large input networks with many edges, this optimization
process can become computationally unwieldy. To address this
issue, we only consider input networks Gin that respect the
symmetries of A: All structurally unique edges in A must have the
same edge weight in Gin. Further, we only consider the inclusion
of edges in Gin when they have a counterpart in A with nonzero
weight. In this manner, the network-optimization process can be
parameterized by a significantly smaller number of trainable values
for networks with a high degree of symmetry.

To investigate possible strategies for enhancing transition-
network learnability, we apply the optimization method to two
transition networks: a modular network and a lattice network.
Both of these networks have 15 vertices and share the property
that every node has degree 4. Importantly, previous human
experiments were able to directly estimate the accuracy parameter
β of human learning in these networks (21). Next, to explore
the optimization of learnability in asymmetric networks with
nonuniform transition probabilities, we consider the optimization
of learnability for networks constructed from generative network
models. Lastly, to probe how real-world information networks
ought to be designed, we investigate how learnability can
be maximized for semantic networks extracted from college
mathematics textbooks.

In performing these numerical experiments, we are guided
by several hypotheses. Specifically, in considering prior work
demonstrating the efficacy of exaggeration in animal communi-
cation (26, 27), we predict that strategic modulation of emphasis
will significantly improve learnability in both synthetic and real-
world information networks. Furthermore, in view of prior work
demonstrating that highly clustered networks are more learnable
than lattice or random networks (25), we hypothesize that optimal
emphasis-modulation strategies will reinforce connections within
clusters and de-emphasize connections across clusters. And, fi-
nally, given the human tendency to attend to salient information,
we hypothesize that core–periphery networks will be best learned
by emphasizing edges in the network periphery, which would
otherwise be less easily learned. Taken together, our numerical
experiments aim to assess whether and how the accuracy of human
network learning can be systematically enhanced by targeted
emphasis and de-emphasis of network features.

Results

Optimizing the Learnability of Graph Exemplars.
The modular graph exemplar. We begin by studying the learning
optimization of the modular graph shown in Fig. 1A, which has
been used in human learning studies (15, 28–30). In this graph,
there are only three structurally unique edges: cross-cluster edges
(orange), boundary edges that are adjacent to cross-cluster edges
(green), and edges deep within modules (gray). Thus, the structure
of Ain can be determined by two free parameters, λcc and λb ,
representing the weights of cross-cluster and boundary edges in
Gin, respectively, relative to the weight of deep edges in Gin. Note
that one free parameter has been removed due to the constraint
that Ain is normalized, such that all rows sum to one.

To illustrate the parameter regimes where certain weighting
combinations of λcc and λb are effective in enhancing learnability,
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A C

β = 0.3

E

B

β = 0.05

D

β = 5

F

Fig. 1. Optimizing the learnability of a modular graph. (A) A modular graph with 15 nodes, each with degree ki = 4, resulting in 30 edges. (B–D) Here, we show
the Kullback–Leibler divergence ratio (less than one indicates enhanced learnability) across a section of the λcc , λb parameter space, for different values of
β. For increased contrast, the ratios have been truncated to the range [0.9, 1.1]. (B) Results for β = 0.05, corresponding roughly to the median accuracy of
human learners in prior studies (21). (C) Results for β = 0.3, corresponding to the mean accuracy of human learners in prior studies (21). (D) Results for β = 5,
corresponding to an exceptionally accurate network learner. (E) The optimal edge weights λcc and λb for 0 < β < 1. (F) The Kullback–Leibler divergence between
the learned network and the true network for different values of β, both with and without input network optimization.

we first computed the ratio DKL(A||f (Ain))
DKL(A||f (A)) over the parameter

space 0≤ λcc ≤ 2, 0≤ λb ≤ 2, for three different values of β
(Fig. 1 B–D). This ratio characterizes the learnability that can
be achieved by targeted modulation of emphasis in the network.
Specifically, a ratio of less than one would indicate that the
emphasized network improves learnability over the true network.

Interestingly, at low values of β (Fig. 1B; β = 0.05), when the
learning process is highly inaccurate, there are two regimes in
which an emphasized network structure improves learnability: one
that heavily de-emphasizes boundary edges and one that moder-
ately de-emphasizes cross-cluster edges. For intermediate values of
β (such as β = 0.3 in Fig. 1C ), the two optimal regimes combine
into one. As the learning accuracy increases further (Fig. 1D;
β = 5), the one optimal regime decreases in size and converges to
the true network structure. Thus, for extremely precise learners,
the only reasonable network structure to learn would be the
true network structure, corresponding to λcc = λb = 1 (Fig. 1D;
β = 5).

To assess the precise values of edge weights that lead to optimal
learning of the modular graph, we minimize DKL(A||f (Ain))
with respect to λcc and λb at different values of β (Fig. 1E). We
find that cross-cluster edges are always de-emphasized, whereas
boundary edges are overemphasized for inaccurate learners, but
de-emphasized for the average human learner (β ≈ 0.3). We
present a graphical depiction of the optimal input network and
the resulting learned structure for the modular graph at β = 0.05
in Fig. 2A.
The lattice-graph exemplar. To understand how optimizing net-
work learnability varies with the topology of the target net-
work, we also study the optimization of learnability of a lattice
graph that was examined in human learning studies (21, 29)

(SI Appendix, Fig. S2). While we find qualitative differences in
the efficacy of the optimization process for modular and lattice
graphs, we find, similarly, that small, cluster-like substructures
in the lattice graph are emphasized to maximize learnability,
whereas edges between these substructures are de-emphasized. We
present a graphical depiction of the optimal input network and
the resulting learned structure for the lattice graph at β = 0.05 in
Fig. 2B.
A Sierpiński graph exemplar. Next, to assess whether the strategy
of overemphasizing edges within clusters and de-emphasizing
those between clusters extends to larger networks with more
complex community organization, we also consider a Sierpiński
network with hierarchical community structure (SI Appendix,
Fig. S3). Consistent with previous findings, we find that de-
emphasizing cross-cluster edges at all hierarchical levels of orga-
nization is an effective strategy for optimizing learnability. In
addition, we observe that cross-cluster edges at the highest level
of organization ought to be de-emphasized the most.

Optimizing the Learnability of Generated Networks.
Stochastic block networks. Thus far, we have found that the
learnability of networks with modular structure is optimized
by overemphasizing the edges within clusters of nodes and de-
emphasizing the edges between clusters. However, our analy-
ses have focused on networks with high degrees of structural
symmetry. Here, we extend our analysis to randomly generated
networks, studying the optimization of learnability in stochastic
block networks.

We consider two classes of stochastic block networks: 1)
stochastic block networks in the absence of specific structure–
degree correlations, where all cross-cluster edges are equally
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A
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f (A )

f (A * )

A
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f (A * )

A B

Fig. 2. Optimal emphasis modulation of the modular and lattice networks. Here, we show the learned networks resulting from human learning of the modular
and lattice networks, respectively (A and B, Upper), as well as from the modular and lattice networks optimized for learnability (A and B, Lower). Optimized and
learned networks were both computed at β = 0.05. Edge thickness indicates transition probabilities.

likely to be included, and all within-cluster edges are equally
likely to included; and 2) degree-corrected stochastic block
networks with heterogeneous degree distributions. These classes
were chosen to assess whether degree heterogeneity, a common
feature of real-world networks (37, 38), influences the efficacy
of strategies for enhancing network learnability in modular
networks. In particular, we consider networks with N = 200
nodes, 5 communities, and an average degree of 〈k〉= 10
(Fig. 3 A and B; see Materials and Methods for network-generation
procedures). For a given stochastic block network GSBM with a
normalized transition matrixASBM , we parameterize the network
presented to learners Gin by a single parameter λcc , representing
the weight of edges between clusters relative to the weight of

edges within clusters. We then compute the cross-cluster weight
λcc that optimizes the learnability of the transition network
ASBM .

We begin by analyzing the enhancement of learnability for
stochastic block networks without structure–degree correlations.
In Fig. 3C, we show the optimal cross-cluster weight λcc as a
function of the fraction f of edges chosen to be within commu-
nities. Importantly, we find that the optimal cross-cluster weight
decreases considerably as the modularity of the target stochastic
block networks increases. Moreover, for higher β, we find that
optimally emphasized networks maintain more weight on cross-
cluster edges, consistent with our earlier analysis of the modular
network (Fig. 1A). In addition, increases in the learnability of

A

Standard

C E

B

Degree-corrected

D F

Fig. 3. Optimizing the learnability of synthetic modular networks. (A and B) Examples of a standard stochastic block network and a degree-corrected stochastic
block network. Node sizes are proportional to node degrees, with cross-cluster edges shown in purple and orange, respectively. (C and D) The optimal cross-
cluster edge weight λcc for enhancing learnability versus the fraction f of edges within communities at different values of β. Results are shown for stochastic
block networks and degree-corrected stochastic block networks, respectively. (E and F) The Kullback–Leibler (KL) divergence ratio DKL(A||f(Ain))

DKL(A||f(A)) achieved with
optimal cross-cluster edge weights at different values of β. Results are shown for stochastic block networks and degree-corrected stochastic block networks,
respectively. The findings reported in C–F represent results obtained for networks with N = 200 nodes, 5 communities, and an average degree of 〈k〉 = 10. Each
curve is an average over the results from 25 generated networks.
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stochastic block networks (reductions of Kullback–Leibler diver-
gence ratios) are most prominent for values of f above 0.8 and
increase considerably as β decreases (Fig. 3E).

To determine whether the degree heterogeneity impacts the
optimization of network learnability, we study degree-corrected
stochastic block networks. For such networks, we find that the
optimal cross-cluster edge weight λcc decreases faster with in-
creasing f than for standard stochastic block networks (Fig. 3D).
Interestingly, for degree-corrected stochastic block networks, the
improvements in learnability are significantly larger than for reg-
ular stochastic block networks (Fig. 3 E and F ). For both types of
networks, increases in network learnability are most pronounced
for low values of β and peak for highly clustered networks with
a fraction of within-community edges f = 0.92. This finding
indicates that highly modular networks are most optimizable
through cross-cluster weight tuning.
Watts–Strogatz networks. Just as we generalized the analysis of
modular networks to stochastic block networks, we can also
extend our analysis of lattice networks to a wide range of ran-
domly generated Watts–Strogatz networks (SI Appendix, Fig. S4).
Consistent with previous analysis, we find that edges in Watts–
Strogatz networks that contribute to local, lattice-like clustering
are emphasized when maximizing learnability.

Optimizing the Learnability of Semantic Networks Extracted
from Mathematics Textbooks. Our results thus far have demon-
strated that, for many classes of synthetic networks, edges that
contribute to local clustering or intramodular connections are
reinforced to maximize learnability. Still, it remains to be demon-
strated that these results extend more generally to real-world
information networks. To probe the optimal emphasis modula-
tion strategies of real-world networks, we study semantic net-
works extracted from college-level linear algebra textbooks (39,
40). Specifically, nodes represent recurring concepts (e.g., “vec-
tor space” and “invertible”), and edges between concepts are
weighted by the number of sentences in which the two concepts
co-occur.

In previous analyses, we were able to reduce the number of
free parameters in the network-learnability optimization process
by considering either network symmetry or a partitioning of the
edges into classes that are made distinguishable by the network-
generation process (e.g., cross-cluster edges or nonring edges).
However, given that these semantic networks are empirical, when
optimizing a network representation to maximize learnability, we
cannot reduce the number of optimization parameters a priori,
and, instead, we must vary all edges with nonzero weight as free
parameters. Specifically, for some semantic network GSEM =
(V ,E ) with edge weights wij and normalized transition ma-
trix ASEM , we determine a weighted graph Gin = (V ,E ) with
weights w∗

ij such that its corresponding normalized transition
matrix Ain minimizes DKL(ASEM ||f (Ain)). In particular, for
every edge e = {i , j} ∈ E , the factor λij =

w∗
ij

wij
by which the

edge e is scaled in Gin is used as an optimization parameter. As
before, these parameters are then simultaneously optimized via
dual annealing to minimize the Kullback–Leibler divergence cost
function. Then, we reduce the number of free parameters by one
by enforcing the requirement that the total sum of edge weights in
Gin equals that of GSEM . Doing so allows for more interpretable
comparisons between the optimized network A∗ and the original
semantic network ASEM .

Interestingly, we find that for these semantic networks, very
little improvement in learnability can be achieved at extremely low
values ofβ (≈ 0, reflecting poor learning accuracy), but significant

enhancement of learnability is possible for all other values of β
(Fig. 4C ). In particular, the network-optimization process yields
the most benefit for moderately accurate learners (β ≈ 0.05). This
observation contrasts greatly with our prior findings in studying
modular networks: that the greatest improvements in learnability
occur near β ≈ 0, with significantly diminishing improvements
at higher β values. One natural explanation for this difference is
that the semantic networks do not possess large-scale community
structure, but, rather, can be characterized as possessing core–
periphery structure with community structure within the periph-
ery nodes (39). Therefore, the learnability-optimization strategies
for modular networks—which mainly involved overemphasizing
edges within clusters and de-emphasizing cross-cluster edges—are
likely not applicable to increasing learnability of these semantic
networks.

To understand which edges are reinforced or de-emphasized
to increase learnability, for each semantic network, we follow
the procedure outlined in ref. 39 and classify nodes into core
and periphery categories (Materials and Methods). Then, for each
network, we determine the community structure of the periphery
nodes and categorize the edges of each network into four cate-
gories (Fig. 4A): edges between core nodes; edges between a core
node and a periphery node; cross-cluster edges between periphery
nodes; and within-cluster edges between periphery nodes. For
each class of edges, we compute the mean optimal weight scaling
over all 10 semantic networks for 0< β ≤ 0.2 (Fig. 4B). Notably,
we find that for β > 0.05, edges between core nodes are de-
emphasized the most, whereas edges between periphery nodes
are reinforced. This finding is sensible, as the core of a core–
periphery network is densely connected. Therefore, any particular
edge within the core could be de-emphasized to suppress po-
tential spurious connections to nearby periphery nodes resulting
from inaccurate learning. In addition, among the two classes of
periphery–periphery edges, those that connect two nodes within
the same periphery community tend to be exaggerated, whereas
cross-cluster periphery–periphery edges are de-emphasized. These
observations regarding cross-cluster and within-cluster periphery–
periphery edges are consistent with our prior analyses of optimal
cross-cluster edge weights in modular networks, which also sug-
gest that cross-cluster weights should be de-emphasized.

We can further characterize the types of edges that are either
overemphasized or underemphasized by comparing changes in
edge weight with structural measures of centrality (Materials and
Methods). First, we consider the relationship between edge-weight
scaling and edge-betweenness centrality, a metric that quantifies
the frequency with which shortest paths pass through a given
edge. Given that cross-cluster edges have high edge-betweenness,
it is natural to expect that edges with high betweenness will be
de-emphasized when optimizing learnability. Indeed, we observe
that, aside from edges with an edge betweenness centrality of zero,
there is a clear inverse relationship between edge-betweenness
centrality and optimal edge-weight scaling in semantic networks
(Fig. 4E ; β = 0.2).

We also consider edge-weight scaling and edge-degree
centrality, a metric that quantifies the average weighted degree
of the two connected nodes. Edges within the core of a core–
periphery network are likely to be incident on nodes with greater
connectivity and, thus, would generally have higher edge-degree
centrality. Thus, we expect that edge-degree centrality will be
inversely related to optimal edge-weight scaling. Consistent
with these expectations, we observe that edges with lower edge-
degree centrality tended to be reinforced more, and edges with
higher edge-degree centrality tended to be de-emphasized more
(Fig. 4F ).
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A C E

B D F

Fig. 4. Optimizing the learnability of semantic networks extracted from college mathematics textbooks. (A) A schematic of how edges in the semantic networks
were classified based on core–periphery node classification and periphery community structure. (B) The optimal weight scaling for each of the four classes of
edges shown at different values of β, averaged over all semantic networks. (C) The Kullback–Leibler (KL) divergence ratio DKL(A||f(Ain))

DKL(A||f(A)) achieved with optimized
weight scaling at different values of β. Results are shown for each of the 10 semantic networks corresponding to the 10 college-level linear algebra textbooks
(61–70). (D) The distribution of optimized edge-weight scalings for the classes of edges at β = 0.2, aggregated over all semantic networks. Prob., probability. (E
and F) The optimal edge-weight scaling versus edge-betweenness centrality and edge-degree centrality, respectively, aggregated over all semantic networks for
β = 0.2. Each datapoint represents an average over 500 edges binned by centrality score.

Performance of Network-Optimization Strategies in the
Transient Network-Learning Regime. Thus far, our analysis has
implicitly assumed that human network learners are allowed to
observe infinite sequences of network transitions (21, 25). While
this assumption greatly simplifies optimization strategies, it is
possible that such strategies break down when the number
of transitions that human learners are allowed to observe is
limited. To address this possibility, we ran simulations of the
network-learning process in the transient regime with three
different network-learning strategies (Materials and Methods):
1) maximum-likelihood estimation (optimal in the infinite obser-
vation limit), 2) standard human network learning (as reported
in ref. 21), and 3) optimized human learning (as described here
in our paper). Both the standard and optimized human learning
strategies were evaluated at β = 0.1, which is close to the mean
learning accuracy reported in ref. 21. These simulations were run
for the modular graph with 15 nodes (Fig. 1A) and the semantic
networks extracted from the linear algebra textbooks authored by
Axler and Edwards (Fig. 1 B and C, respectively).

For the modular network, optimized human learning main-
tained an edge in accuracy over standard human network learning,
as the number of transitions observed increased (Fig. 5A). Both
learning strategies were outperformed by maximum-likelihood
estimation throughout the duration of the simulated learning
processes. Remarkably, for the semantic networks, both human
learning and optimized human learning initially outperformed
the accuracy of maximum-likelihood estimation, with optimized
human learning maintaining its superiority for a longer duration
(Fig. 5 B and C ). One plausible explanation is that the inductive
biases introduced in the human learning process enable humans
to initially learn clustered areas of networks more efficiently than
unbiased maximum-likelihood estimation strategies.

Discussion

In this article, we study how networks presented to human
learners can be tuned to increase learnability. In particular, using a
computational model of human learning, we compute the optimal
network to present to a human learner so as to minimize the
discrepancy between the learned representation and the target
network. First, these methods were used to analyze two simple
networks: a modular graph and a lattice graph. We find that
for both graphs, improvements in learnability can be made by
de-emphasizing edges that connect different modules or clusters
of nodes and by exaggerating edges within modules or small
clusters. This finding is consistent with studies of in silico models
and in vivo animal behavior of sampling spaces. Animals and
computational models exhibit nonrandom patterns of exploration
in order to better sample an environment with nonregular net-
work structure (41), effectively emphasizing and overrepresenting
specific harder-to-learn portions of the environment (42). Further,
these improvements increase considerably in magnitude for highly
inaccurate human learners, but are less advantageous for accurate
learners. Importantly, for inaccurate learners, the optimal input
networks for both modular and lattice graphs result in internal
network representations that capture clusters in the original net-
work in a near-perfect manner, but poorly capture edges between
small clusters or modules. Notably, edges between communities
or clusters are already naturally difficult to learn in the ab-
sence of disproportionate edge-weighting in the input network
(21, 25), but are found to be worth de-emphasizing further when
optimizing overall learnability. Our findings are consistent with
prior work showing that the difficulty of learning cross-cluster
edges in modular networks is robust to the size and number of
modules in the network (43).
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A B C

Fig. 5. Performance of network-learning strategies in the transient regime. Each panel shows the Kullback–Leibler (KL) divergence between some true network
and the learned network as a function of the number of observed transitions. Three network-learning strategies are shown: maximum-likelihood estimation
(optimal in the limit of infinite observations), standard human network learning (supported by ref. 21), and optimized human network learning (introduced in
this paper). All plots report 10 simulations of each network-learning strategy, with human learning and optimized human learning simulations run at β = 0.1,
close to the median learning accuracy reported in ref. 21. The three networks analyzed are the modular network with 15 nodes (A) (Fig. 1A), the semantic
network extracted from the linear algebra textbook authored by Axler (B) (61), and the semantic network extracted from the linear algebra textbook authored
by Edwards (C) (63).

Then, to probe whether our findings with the modular and
lattice networks extended more generally to larger, more com-
plex networks lacking a high degree of structural symmetry or
uniform transition probabilities, we analyzed the optimization
of learnability of networks generated from generative network
models. We first began by studying the optimization of stochastic
block networks. Importantly, we observed that for stochastic block
networks with a high fraction of edges within communities, signif-
icant gains in network learnability can be achieved only by tuning
a single parameter representing the weight of all cross-cluster
edges. Specifically, we observed that stochastic block networks op-
timized for learnability de-emphasized cross-cluster edges. Next,
motivated by the prevalence of heterogeneous degree distributions
among real-world networks (37, 38, 44–46), we investigated the
optimization of learning for degree-corrected stochastic block net-
works. Through applying a similar single-parameter optimization
approach, we found that degree-corrected stochastic block net-
works share similar learning-optimization properties to standard
stochastic block networks when tuning cross-cluster edge weights.
However, the efficacy of these optimization strategies in improving
network learnability was found to be slightly higher for degree-
corrected stochastic block networks. This finding suggests that
the learning of networks with hierarchically modular organiza-
tion can be improved significantly more (using this cross-cluster
edge-weight tuning) than can random modular networks. Taken
together with prior work showing that hierarchically modular net-
works share similar information-theoretic properties with a large
class of real-world networks (25) that random modular networks
lack, these findings have implications for how features of real-
world information networks ought to be weighted or designed.

Then, to understand optimal strategies for enhancing the learn-
ability of real-world information networks, we analyzed how
semantic networks extracted from college-level mathematics text-
books can be reweighted to maximize learnability. These net-
works exhibit core–periphery structure, indicating that they are
composed of nodes that can roughly be divided into a densely
connected core and a periphery that is loosely connected to nodes
within the core (47–49). In addition, prior work has established
that the periphery of these semantic networks possesses commu-
nity structure (39). Importantly, unlike modular networks, we
find that the semantic networks are not very optimizable near
β ≈ 0, but are significantly optimizable, even for moderately large
values of β. One explanation for the difference in optimization
near β = 0 between the modular networks and semantic networks

is that, for modular networks, optimal input networks approach
disconnected graphs as β → 0. Typically, as β → 0, the learned
representation from any input network approaches a uniform net-
work with no particular structure (21, 25). However, a competing
limit may occur when studying the optimization of learnabil-
ity of modular networks, in that cross-cluster weights may also
approach zero. In this limit, a network presentation approaches
disconnected components, with each component representing a
module of the original network. Thus, when β is taken close
to zero, learning inaccuracies primarily strengthen edges within
modules, causing only minor decreases in overall accuracy of
the optimized network, as nodes within modules or clusters are
already densely connected with each other in the original target
network. In contrast, for networks without overall community
structure, such as the semantic networks extracted from the math-
ematical texts, the optimal input graph always remains connected
as β → 0, and, thus, any learned representation will approach
an all-to-all network with uniform transition probabilities in this
limit.

To characterize the features of these semantic networks that
become reinforced or de-emphasized when optimizing for learn-
ability, we categorize the edges in each of the semantic networks
by the core–periphery status of their endpoints, as well as by
cross-cluster or within-cluster participation in periphery commu-
nity structure. We find that edges contained solely among the
periphery of these networks are emphasized the most, whereas
core edges are de-emphasized, even at higher β. These findings
suggest that the learnability of information networks can generally
be enhanced by placing additional emphasis on relationships
between less commonly occurring concepts and de-emphasizing
highly central concepts. To assess this idea further, we investigated
how the centrality measures of edge betweenness and edge degree
were associated with the scaling of edge weights for these semantic
networks. In particular, we found that both centrality measures are
negatively correlated with optimal edge-weight scaling, confirm-
ing that, in these semantic networks, edges that are highly central
generally should be de-emphasized to maximize learnability.

The optimization of networks for human learnability presents
new angles for understanding real-world information networks.
Recent work has demonstrated that science texts covering the same
topic may vary greatly in their lexicon profiles and didactic ap-
proach (50). Understanding how edges in information networks
associated with educational materials should be modulated may
also be an insightful way of profiling the semantic content of
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educational materials. Furthermore, while we have explored the
optimization of semantic networks, other real-world information
networks, such as phonological networks, may exhibit signifi-
cantly different local and global topology (51). The erroneous
clustering introduced in the human network-learning process
would be especially detrimental for learning triangle-free substruc-
tures. Therefore, for some phonological networks, where star-like
structures and leaf nodes are more common, one might expect that
the network-optimization strategies employed in this work would
de-emphasize edges to leaf nodes. Further investigation of how
other kinds of information networks should be optimized may
reveal new insights into network substructures that are optimal
for learning.

Finally, we would like to draw attention to a possible
connection between the ideas explored in this paper and the
distinctions between human learning and machine learning. In
particular, the simulations of network learning in the transient
regime demonstrate that, although perfect, machine-like learning
strategies outperform human learning after many observed
transitions, human-learning strategies work surprisingly well in
the low-data regime. This finding mirrors the observation that
humans are capable of learning many tasks from few observations,
in comparison to common machine-learning methods that often
require large amounts of training examples to achieve decent
performance. In view of this connection, an insightful way of
explaining our results on transient-regime learning is that human
learning strategies enforce helpful inductive biases in the learning
process. Much like how regularization strategies in machine learn-
ing act as inductive biases and often improve performance in the
low-data regime, the inductive biases of human learning greatly
increase the data efficiency of the learning process. However,
in both kinds of learning, when data are plentiful, inductive
biases can hinder performance. While the present work primarily
focuses on learning in the limit of infinite observations, future
work should expand upon learning dynamics in the transient
regime to uncover additional insights related to this connection.

Methodological Considerations. We note that our results on
optimizing the learnability of generated networks are strictly a
lower bound on improvements in human learnability of networks
that can be afforded through targeted emphasis and de-emphasis
of particular input network features. First, it is possible that
relaxing the symmetry constraint enforced in the optimization
process may lead to further improvements in network learnability.
In addition, since we only consider optimization of learnability of
generated networks via single-parameter tuning (cross-cluster edge
weights or nonring edge weights), it is likely that more nuanced
emphasis-modulation strategies may enhance learnability even
further, beyond what has been demonstrated for both classes of
stochastic block networks analyzed, as well as for Watts–Strogatz
networks. Similarly, our results on semantic networks extracted
from mathematics textbooks only represent lower bounds on im-
provements in learnability that can be achieved through targeted
emphasis modulation. This is a consequence of the fact that
each of the semantic networks analyzed had thousands of edge
weights to be varied as parameters, and, thus, achieving globally
optimal network representations via dual annealing was not always
possible. In addition, the analyses presented in this work have yet
to consider whether adding edges that are entirely nonexistent in a
target network to the input network presented to a human learner
may enhance learnability of the target network. Preliminary find-
ings suggest that increases in learnability can indeed occur when
nonexistent edges are added to an input network representation
(SI Appendix, Fig. S5). Future work could fruitfully consider how

relaxing edge-existence constraints may affect the efficacy of the
estimated optimal network representations.

Conclusion

Recent advances in the study of human information processing
have shed light on the ways that humans learn information
networks. Rather than mapping the structure of networks ex-
actly, inaccuracies in human learning often result in erroneous
or biased internal representations. To overcome inaccuracies in
human learning, we investigate how networks presented to human
learners can be designed to counteract and minimize inaccura-
cies in learning. Across a range of synthetic networks, we find
that reinforcing edges within clusters and de-emphasizing edges
between clusters improves network learnability. In addition, we
analyze how real-world semantic networks can be optimized for
learnability, thereby uncovering the fact that relationships between
periphery concepts ought to be reinforced. Together, our findings
demonstrate that the learnability of network representations can
be significantly enhanced through intentionally modulating the
emphasis of specific network features.

Materials and Methods

Converting between Weighted Graphs and Transition Matrices. To con-
vert between graphs and transition matrices, we use the following two relations:

Given a weighted graph G, the normalized transition matrix corresponding to
random walks is given by Aij =

Gij∑N
k=1 Gik

.

Conversely, the adjacency matrix for a weighted, undirected graph corresponding
to a reversible transition matrix A is determined up to a multiplicative constant by
Gij = πiAij, where π is the stationary distribution of A.

Optimization Methods. To assess how much a learned network differs from
the target network, we use the Kullback–Leibler divergence. The Kullback–Leibler
divergence between normalized transition networks A and B is defined as

DKL(A||B) =−
∑

i

πi

∑
j

Aij log
(

Bij

Aij

)
, [2]

whereπ is the stationary distribution of A, and only terms with nonzero transition
probabilities are summed over.

For some target transition structure A, the optimal input structure Ain = A∗

was determined by using the dual-annealing optimization method in scipy,
with DKL(A||f(Ain)) as the cost function. During the optimization process, the
edge weights of Ain corresponding to edges that exist in A were varied as free
parameters bounded between zero and one. The matrix Ain was then normalized
prior to every cost-function evaluation. For the modular and lattice graphs, the
number of free parameters varied during optimization was reduced based on the
networks’ respective symmetries. Network symmetries were computed by using
the iGraph package in Python (52).

Network Generation. We generated stochastic block networks as follows:
Starting with N nodes, we first assigned each node to a community labeled 1
through 5 uniformly at random. Then, �|E|p� edges were added between nodes
in the same module, where |E| is the total number of edges in the network.
Specifically, each addition of a within-cluster edge was performed by selecting
a community uniformly at random, selecting two nonadjacent nodes within the
community uniformly at random, and then adding an edge between the selected
nodes. Finally, |E| − �|E|p� edges were then added between nodes in different
communities. This process was performed by selecting two different communities
uniformly at random, then selecting one node in each community uniformly
at random, and connecting the nodes if they were nonadjacent. If they were
adjacent, the step was repeated.
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For degree-corrected stochastic block networks, a similar network-generation
method was used, with modifications adapted from the procedure described in
ref. 25. Specifically, each node was assigned an index from i from 1 to 200 and was
then assigned a weight i−1. Then, the probability of a given node being chosen
for the addition of an edge at any step was proportional to the weight of the node.

Analysis of Semantic Networks. Given a weighted network G = (V , E) with
edge weights wij, we identified core–periphery structure by finding a partition of
the vertex set V into disjoint sets C and P so that the following core-ness quality
function is maximized:

QC =
1
vC

⎛
⎝∑

i,j∈C

(wij − γC w)−
∑
i,j∈P

(wij − γC w)

⎞
⎠, [3]

where vC is a normalization constant, w is the average over all edge weights, and
γC is a resolution parameter that we set to one.

Given a partition V = C ∪ P into core and periphery nodes, we evaluate
the community structure of the periphery of G by maximizing the following
modularity quality function on the subgraph of G induced on P:

QC =
1

vM

⎛
⎝∑

i,j∈P

(wij − γM
sisj

vM
)δij

⎞
⎠, [4]

where vM is a normalization constant, si =
∑

j∈P wij is the sum over the weights
of all edges incident on vertex i, and γM is a resolution parameter that we set to
one.

The edge-betweenness centrality for some edge e is defined as

CB(e) =
2

(n − 1)(n − 2)

∑
s,t∈V

σ(s, t|e)
σ(s, t)

, [5]

where σ(s, t) is the number of weighted shortest paths between nodes s and t,
and σ(s, t|e) is the number of such shortest paths that go through the edge e.

For an edge e = {i, j}, we define the weighted edge degree centrality as

CD(e) =
si + sj

2
∑

p<q wpq
, [6]

where si =
∑

k wik is the weighted degree of node i in the network.

Simulating Transient Network Learning. While observing random walks
drawn from some transition network, the maximum-likelihood estimate for the
transition network can be described by

AMLE
ij (t) =

nij(t)∑
k nik(t)

, [7]

where nij is the number of observed transitions from node i to node j by time step
t. As described in ref. 21, the human learned representation takes a similar form:

Ãij(t) =
ñij(t)∑
k ñik(t)

, [8]

where ñij is the revised (and erroneous) count of transitions from node i to
node j. In particular, it is described by

ñij(t + 1) = ñij(t) + Bt(i)[j = xt+1], [9]

where xt+1 is the node observed at time step t + 1, [·] is the Iverson bracket,
and Bt(i) encodes an internal belief about which node was observed at time t,
described by

Bt(i) =
1
Z

t−1∑
Δt=0

e−βΔt[i = xt−Δt], [10]

where Z represents a normalizing constant.

Citation Diversity Statement. Recent work in several fields of science has
identified a bias in citation practices, such that papers from women and other
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by using databases that store the probability of a name being carried by a woman
(53, 59). By this measure (and excluding self-citations to the first and last authors
of our current paper), our references contain 21.05% woman(first)/woman(last),
7.89% man/woman, 14.17% woman/man, and 56.88% man/man. This method
is limited in that 1) names, pronouns, and social media profiles used to construct
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cannot account for intersex, nonbinary, or transgender people. We look forward
to future work that could help us to better understand how to support equitable
practices in science.
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