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Supporting Information Text12

Supplementary Results.13

The analytic approach. One way of gaining insight into how to optimally modulate emphasis of edges in a network presented to14

a human learner is by directly solving for the optimal transition matrix from Equation 1 (main text). In particular, given some15

target transition matrix A we can exactly solve the relation f(A∗) = A to find the proper A∗ to present to the learner, finding16

A∗ = ((1 − e−β)I + e−βA)−1A. [1]17

In the limit β → ∞, we recover the result that A∗ → A, agreeing with the approach for finding the optimally learnable network18

explored in the main text.19

However, for lower values of β, the two approaches differ drastically, as there are a few limitations that make the direct20

solution of A∗ difficult to use. Firstly, the analytic A∗ matrix nearly always includes non-negative elements on the diagonal,21

making it impractical for usage in situations where presenting networks with self-loops to a human learner is not considered.22

Next, to understand the properties of the analytic A∗ further, it is useful to consider the eigendecomposition of A. Specifically,23

we can write24

Aij =
∑
k=1

v
(k)
i λkv

(k)
j , [2]25

where λk represents the kth eigenvalue and v
(k)
i represents the i’th entry of the corresponding eigenvector.26

It is important to note that A∗ shares the same eigenvectors as A, because it can be expressed as a combination of linear27

transformations and inversions of A. Additionally, the eigenvalues of A∗ are transformed via analogous linear transformations28

and inversions as follows:29

A∗
ij =

∑
k

v
(k)
i

λk

(1 − e−β) + e−βλk
v

(k)
j . [3]30

The denominator of the expression in the summation shown in Equation S3 suggests that it is possible for A∗ to be singular.31

In particular, when λk = 1 − eβ holds for any eigenvalue, the expression diverges. Furthermore, if we restrict our analyses to32

symmetric, connected target networks A (as done in the main text), we can apply the Perron-Frobenius theorem to conclude33

that −1 ≤ λk ≤ 1 for all eigenvalues. from this, we can conclude that for β < ln(2) ≈ 0.693, it is possible for Equation S3 to34

diverge.35

To investigate whether this poses a problem in practice, we computationally analyzed the properties of the analytic A∗
36

for various networks over a range of β values (Fig. S1). In particular, we applied the approach to the the modular graph37

(Fig. 1A, main text), a random graph with the same number of nodes and edges, and a complete graph corresponding to a38

uniform transition matrix. We found that for all three networks, there were some values of β below ln(2) that resulted in the39

argument to the matrix inverse in Equation S1 to become singular. While it may be surprising that even the A∗ obtained for40

the transition network corresponding to the complete graph suffers from this issue, we note that this is because we do not41

consider networks with self-loops. In particular, if A is a completely uniform transition matrix that also includes self-loops42

(nonzero elements along the diagonal), then the only singularity occurs at β = 0.43

Finally, as shown in Fig. S1A, unphysical values appearing in the A∗ transition matrices occur across a wide range of β44

values (transition probabilites that are negative or greater than 1).45

From these findings, we can conclude three main difficulties with the practical usage of the analytic solution to A∗: 1) the46

presence of self-loops, 2) the singular expressions that appear at lower values of β relevant to the human learning regime, and47

3) the presence of unphysical values in the analytic A∗ solutions.48

The lattice graph exemplar. To understand how optimizing network learnability varies with the topology of the target network,49

we also consider the lattice graph presented in Fig. S2A. Unlike the modular graph, the lattice graph has only two structurally50

unique edges: edges within triangles and edges between triangles. Thus, an input network Ain can be fully described by only51

one free parameter, the weight λl of edges between triangles (orange), relative to the weight of edges within triangles (grey).52

Due to the reduction in the number of parameters, we are able to characterize gains in learnability in the lattice network while53

continuously varying both λl and β (Fig. S2B). Notably, learnability of the lattice graph increases markedly in the regime of54

low β and low λl. Moreover, across all values of β, we find that optimizing learnability requires de-emphasizing the edges55

between triangles (Fig. S2C ).56

We note that there are considerable differences between the optimal emphasis modulation strategies of modular and lattice57

graphs as a function of β. First, the profiles of the curves of optimal edge weight values are significantly different between the58

two networks (compare main text Fig. 1E and Fig. S2C ). Specifically, the optimal edge weight curve of the lattice network shows59

an inflection point, whereas both optimal edge weight curves for the modular graph do not. Similar qualitative differences also60

appear between the optimal Kullback-Leibler divergence curves (compare main text Fig. 1F and Fig. S2D). These differences61

arise despite the fact that both networks were chosen to share the same local properties (all nodes have 4 neighbors), and thus62

have corresponding transition matrices with the same stationary distribution. This observation suggests that different networks63

require different approaches to maximize learnability, and that the efficacy of these approaches will differ by topology.64
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A Sierpiński graph exemplar. To assess whether the strategy of over-emphasizing edges within clusters and de-emphasizing those65

between clusters extends to larger networks with more complex community organization, we consider a modified version of66

the Sierpiński network with 3 hierarchical levels and 5 communities at each level. Specifically, the network was modified to67

include a sixth community at the highest level (Fig. S3A), allowing the graph to become 5-regular, and therefore allowing68

its transition network to be uniform. This network was chosen to assess how edges at various levels ought to be weighted69

to maximize learnability in networks with hierarchically modular organization. Despite containing 150 nodes, the network70

possesses a large degree of structural symmetry, and has only four unique edges: level-2 cross-cluster edges (λ2
cc, orange), level-371

cross cluster edges (λ3
cc, blue), boundary edges adjacent to level-2 cross cluster edges (λ2

b , green), and boundary edges adjacent72

to level-3 cross-cluster edges (λ3
b , grey). As before, we reduce the number of free parameters by 1 and fix λ3

b = 1.73

Overall, we find that de-emphasizing both classes of cross-cluster edge weights is an effective strategy for optimizing the74

learnability of the Sierpiński network (Fig. S3B,C). However, there are slight differences in optimal edge weights between75

the level-2 and level-3 edges (Fig. S3D). In particular, we find that edges at the highest level of organization (level-3 edges)76

ought to be de-emphasized slightly more than level-2 edges. The efficacy of these optimization strategies scales similarly with77

β as in the case of the 15-node modular graph (compare main text Fig. 1F and Fig. S3F). The learned representations of78

the Sierpiński network with and without edge weight optimization are shown for β = 0.05 in Figs. S3C and S3E, respectively.79

These findings further suggest that the learnability of both modular and hierarchically modular networks can be substantially80

enhanced through the de-emphasis of cross-cluster edges, and the reinforcement of within-cluster edges. Moreover, by optimizing81

learnability, the learned representation of the hierarchically modular network maintains the fine-scale community structure82

(Fig. S3E). Interestingly, at low β values, the learned representation resulting from optimal edge weights strikes a trade-off83

between local and global features: it strongly captures the features of each of the small 5-node cliques, but poorly captures84

the hierarchical structure of the network. This pattern is likely a consequence of the fact that, at low β values, near-perfect85

learning is impossible, and thus an optimal weighting strategy for minimizing the Kullback-Leibler divergence would place86

emphasis on accurately learning the most commonly occurring substructure.87

Watts-Strogatz networks. Our analysis of the lattice network (Fig. S2A) demonstrated that edges that do not contribute to88

the formation of small clusters or triangles should be de-emphasized in order to optimize network learnability. To assess89

this conclusion in a more general class of networks, we consider the optimization of learnability for Watts-Strogatz networks.90

Prior to any rewiring (p = 0), such networks begin as a ring-like lattice of nodes, with each node only having connections91

to its nearest neighbors in the ring (Fig. S4C). Given the density of local connections, these ring-like networks are highly92

clustered. When a small fraction of edges are then rewired, Watts-Strogatz networks maintain similar levels of clustering, but93

display markedly lower average path lengths (1, 2). In this regime, Watts-Strogatz networks can often be characterized by94

small-worldness, a concept relevant to a number of real-world networks including brain networks, language networks, and95

metabolic networks (3–7). Finally, in the limit of high rewiring p = 1, the structure of Watts-Strogatz networks is very similar96

to that of Erdős–Rényi networks. Motivated by previous work reporting that networks with high clustering coefficients are97

more learnable (8), we investigate the optimization of learnability in Watts-Strogatz networks at different rewiring probabilities98

p. In particular, we seek to determine whether the rewired edges, which deviate from the original highly-clustered ring network,99

ought to be de-emphasized when presented to human learners. In addition, we aim to identify whether the efficacy of strategies100

for optimizing network learnability depend on the emergence of small-world structure, which tends to appear for rewiring101

probabilities of 10−2 ≤ p ≤ 10−1 (9).102

To investigate how rewired edges in Watts-Strogatz networks should be weighted to maximize network learnability, we103

consider the optimal weight λnr of rewired edges relative to non-rewired edges on the ring. For low rewiring probabilities104

(p < 10−0.5), we find that network learnability is optimized by de-emphasizing rewired edges and over-emphasizing edges on the105

ring (Fig. S4A). Considering that the original lattice-like ring is highly clustered, and is therefore naturally easier to learn (8),106

these findings suggest that de-emphasizing areas of a network that do not contribute to clustering may be an effective general107

strategy for enhancing network learnability. This finding is consistent over the range 10−3 ≤ β ≤ 0.2 of β values analyzed. In108

particular, in the limit β → 0, the optimal non-ring edge weight approaches λnr → 0 for nearly all rewiring probabilities p,109

whereas higher β values (more accurate learning) do not require such stark de-emphasis of non-ring edges. In addition, as the110

rewiring probability p approaches 1, the weight given to non-ring edges approaches 1. Given that highly-rewired Watts-Strogatz111

networks are equivalent to random Erdős–Rényi networks, it is reasonable that for high values of p, there is no distinction112

between ring and non-ring edges.113

Interestingly, we also find that improvements in learnability resulting from tuning non-ring edge weights are most prominent114

at intermediate rewiring probabilities near p ∼ 10−1 (Fig. S4B). This finding suggests that the learnability of networks with115

small-world structure is significantly more optimizable when compared to highly ordered lattice-like networks or to highly116

disordered Erdős–Rényi networks.117

Relaxing the symmetry constraint during optimization. To address the possibility that the symmetry constraints imposed during118

the network optimization process applied in the main text might explain observed results, we optimized the modular graph119

(Fig. 1A, main text) and the lattice graph (Fig. S2A) using the same scheme that was applied for the semantic networks.120

Specifically, the weights of structurally symmetric edges were not reduced to one parameter, and were instead allowed to121

be optimized independently as free parameters. As shown in Fig. S6, relaxation of the symmetry constraint of the network122

optimization process for the modular graph does not substantially change the efficacy of network optimization strategies as a123

function of β. In particular, the qualitative findings that distinguish modular graph optimizability from that of the semantic124

networks still remain; we still observe high optimizability near β = 0, which drops drastically at higher β. Nonetheless, there is125
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a very small but nonzero gap between the two curves at low β, confirming that it is in principle, possible for a network with126

less symmetry than the target network A to be a more optimal choice for A∗.127
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Fig. S1. Properties of the analytic solution to A∗. Here we show how properties of the analytic solutions to A∗ depend on the learning accuracy β for different target
networks A. (A) Values of entries of the analytic A∗ transition matrix for the modular graph (Fig. 1A, main text)—corresponding to the cross-cluster, boundary, and deep
edges—are shown for different values of β. The condition number of the argument to the matrix inverse versus β for (B) the modular graph, (C) a random, undirected graph
with 15 nodes and 30 edges, and (D) the complete graph with 15 nodes.
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Fig. S2. Optimizing the learnability of a lattice network. (A) A lattice network with 15 nodes, each with degree ki = 4, resulting in 30 edges. (B) Here we show the
Kullback-Leibler divergence ratio (less than 1 indicates enhanced learnability) across a section of the λl, β parameter space. For increased contrast, the ratios have been
truncated to the range [0.9, 1.1]. (C) The optimal edge weight λl for 0 < β < 1. (D) The Kullback-Leibler divergence between the learned network and the true network for
different values of β, with and without input network optimization.
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Fig. S3. Optimizing the learnability of a Sierpiński network. (A) The Sierpiński network S3
5 with 3 levels, modified to have 6 communities at the final level. (C, E) The

learned representations of the Sierpiński network at β = 0.05, both with (E) and without (C) input network optimization. (B) The optimal level-2 edge weights λ2
cc and λ2

b for
0 < β < 1. (D) The differences λ2

b − λ3
b and λ2

cc − λ3
cc between optimal edge weights of levels 2 and 3, for 0 < β < 1. (F) The Kullback-Leibler divergence between the

learned network and the true network for different values of β, with and without input network optimization.
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Fig. S4. Optimizing the learnability of small world networks. (A) The optimal non-ring edge weight λnr for enhancing learnability versus the rewiring probability p of a
Watts-Strogatz network at different values of β. (B) The Kullback-Leibler divergence ratio DKL(A||f(Ain))

DKL(A||f(A)) achieved with optimal non-ring edge weights at different values of

β. The findings reported in panels (A,B) represent results obtained for networks with N = 200 nodes and an average degree of ⟨k⟩ = 10. Each curve is an average over the
results from 25 generated networks. (C) A schematic demonstrating how the structure of Watts-Strogatz networks changes as the rewiring probability p increases. Non-ring
edges are shown in green.
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Fig. S5. Optimal emphasis modulation of an example network when considering nonexistent edges. Here we show the learned networks resulting from human learning
of an example network (top), as well as from the example network optimized for learnability (bottom). The optimized network was determined with the addition of nonexistent
edges as free parameters. Optimized and learned networks were both computed at β = 0.05.
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Fig. S6. Optimization of highly symmetric networks with relaxed symmetry constraints. Here we show the efficacy of network optimization strategies, with and without
the symmetry constraint used in the main text. This is shown for (A) the modular graph (Fig. 1A, main text), and (B) the lattice graph (Fig. S2A.)
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Axler

Concept 1 Concept 2
real number complex number
absolute value complex conjugate
vector space domain
real number nonnegative
singular value positive operator
nonconstant polynomial complex coefficient
diagonal entry arbitrary basis
nonconstant polynomial factorization
division algorithm polynomials

Peterson

Concept 1 Concept 2
unique solution initial value problem
subspace trivial
inverse generalize
matrix product matrix multiplication
linear map linear function
Gauss elimination upper triangular form
Frobenius canonical form similarity invariant
diagonal matrix unitarily equivalent
diagonal entry upper triangular

Bretscher

Concept 1 Concept 2
linear multiplicative operation
linear transformation isomorphic
linear system inconsistent
ellipse unit circle
invertible noninvertible matrix
dot product orthogonality
transformation partition
diagonalization diagonalizable
rotation sin cos

Greub

Concept 1 Concept 2
injective linear map
positive basis induced orientation
factor space differential operator
subalgebra extension field
commutative subalgebra
linear mapping surjective
induced transformation minimum polynomial
algebras subalgebra
isomorphic differential operator

Table S1. A sample of edges found to improve network learnability when strengthened. Listed are ten different concept pairs found in the semantic
networks extracted from the linear algebra textbooks authored by Axler, Peterson, Bretscher, and Greub. These edges were selected from networks that
were optimized at β = 0.2.
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Fig. S7. Optimal edge scaling versus edge endpoint degree difference. The optimal edge weight scaling versus the absolute difference of the degrees of edges’ endpoints,
aggregated over all semantic networks for β = 0.2. Each datapoint represents an average over 500 edges binned by edgepoint degree difference.
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