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S1. SUPPLEMENTARY METHODS: DATA ACQUISITION
A. Journal selection

In order to broadly characterize citation behavior within and across the subdisciplines of physics, we selected a list
of peer-reviewed journals guided by several criteria. First, the journals needed to cover all major subfields of physics,
as defined by the breakdown of the Physical Review family of journals and the Web of Science (WoS) database
categories. Second, within each subfield we selected the central journals based on their Eigenfactor (EF) score! (a
measure that rates journals according to incoming citations, weighted by the impact of those citations’ journals) as
reported by InCites Journal Citation Reports for the year 2018. Third, we aimed to represent each subfield by an equal
number of journals, while allowing the number of papers to differ. To balance these three considerations, we accessed
lists of journals on WoS according to all pre-defined “journal categories” that we judged to correspond to each physics
subfield as defined by the Physical Review family of journals. We also included an Applied Physics/Nanoscience
subfield, which did not correspond to a Physical Review journal. We ranked each list of journals according to EF
score, from highest to lowest. We then took the top 5 journals according to EF score from each list, after some
journal exclusions. If a journal appeared in multiple lists, we excluded it from all redundant lists except its best
content-based fit. We also excluded journals whose content was not physics-centric enough, or whose content was
inappropriate for the relevant physics subfield. For example, the WoS journal category Physics, Atomic, Molecular
& Chemical contained several high-EF chemistry journals, which we excluded when creating our atomic, molecular,
and optical physics list of journals. Similarly, the WoS journal category Biophysics contained several high-EF biology
and biochemistry journals, which we excluded when creating our soft matter physics list of journals. And the WoS
journal category Physics, Fluids € Plasmas contained several high-EF fluid mechanics and exclusively plasma physics
journals, which we excluded when creating our nuclear physics list of journals. We also found that our procedure
resulted in overlapping lists of journals for the condensed matter and applied physics/nanoscience subfields, so we
disambiguated these lists according to the stated scope of each journal.

This initial search resulted in 7 non-overlapping lists of 5 journals each, for a total of 35 journals. These journals
are listed in Fig. 1b, and the number of articles contained in our data set in each journal per year is shown in Table
S1. We emphasize that our choice of journals with high Eigenfactor score was deliberate, as we purposefully sought in
this work to measure citation imbalance in journals considered “impactful” within their communities. These journals



presumably contain the most widely-read and discussed articles within each community, and these articles’ imbalances
can be considered the most visible and influential within each community.

B. Data collection

We downloaded all papers published in the 35 chosen journals between 1995 and 2020 from the Web of Science
database. We then selected all papers classified as original research articles or review articles, and extracted informa-
tion on author names, reference lists, publication dates, and DOIs. Each paper’s citation behavior was obtained by
matching DOIs contained within its reference list to DOIs of papers in our dataset. Authors’ last names were included
for all papers; however, for a portion of papers, authors’ first names were not included in the database. First names
are necessary for our name-based author gender categorization scheme (see Section S2C), so we attempted to find
these missing first names in two ways: (i) Searching for author first names using Crossref’s API, and (ii) Implement-
ing a name disambiguation scheme (see Section S2 A) whereby authors’ initials and/or other name abbreviations are
matched to and replaced by their full first names if possible.

S2. SUPPLEMENTARY METHODS: DATA PREPROCESSING
A. Author name disambiguation

To maximize the number of analyzable papers for subsequent author gender categorization by first names, we
employed a method of disambiguating authors for whom several versions of their name or initials were available across
papers, followed by assignment of the most complete version of each author’s name to all papers they authored. Due
to the size of our dataset, we performed our name disambiguation procedure in parallel on isolated subsets of papers,
grouped according to their initially-defined subfields shown in Fig S1. This method involved several steps. First, we
identified all cases for which first and/or last authors’ first names consisted only of initials by isolating all authors’
first names for each paper, and then flagging the first and last of those which contained only uppercase letters. Next,
for each case of a flagged first name that only contained initials, we gathered all other name instances with the same
first/middle initials and the same last name. If only one unique first/middle full name matched the initials-only entry,
or if all distinct full name matches were variants of the same name, we assigned that name to the initials. However, if
multiple unique first/middle full names matched the initials-only entry, we did not assign a name to the initials. For
example, if an entry listed an author as A. A. Griffin, and we found matches under Abby A. Griffin and Abigail A.
Griffin, we would replace the A. A. Griffin entry with Abigail A. Griffin. If instead we found matches under Abby A.
Griffin and Arlene A. Griffin, we would not assign a name to A. A. Griffin. Initially, our dataset contained 463,538
initials-only first and/or last author name entries. Through the steps outlined above, we were able to assign full first
names to 88,780 of these entries, for a success rate of 88,780/463,538 ~ 19.15%.

We employed a similar strategy to match name variants in order to more accurately determine authorship histories
of individual authors. For every author entry, we first identified sets of corresponding author entries with matching
last names and either the same first name or first names determined to be common nicknames of each other (e.g., Abby
and Abigail) according to the Secure Open Enterprise Master Patient Index?. If no corresponding matches existed,
we retained the author entry name. If corresponding matches did exist and one match occurred more often, the less
common name variant was changed to the more common name variant. Similarly, if the corresponding matches did
not have any conflicting initials, the less common initial variants were changed to the more common initial variants.
A common non-conflicting scenario in this case was that some matches had middle initials and others had no middle
initials. If multiple corresponding matches did have conflicting initials, however, the author entry name was not
changed.

The name disambiguation scheme just described was only performed within paper subsets corresponding to subfields,
in part because of the size of our data set. We emphasize, however, that overly aggressive name disambiguation across
subfields is not ideal, and might actually introduce spurious name variant matches that affect the accuracy of our
results. As an example, if an author named Sarah Ruth published papers in the nuclear physics subfield in the early
2000s, and another author named Sarah R. Ruth published papers in the soft matter subfield in 2018, an aggressive
name disambiguation scheme applied across subfields might assign the middle initial R. to the nuclear physicist named
Sarah Ruth. However, for common names, given the size and scope of our data set and the massively distinct training
and expertise needed to work in different subfields of physics, it is not a given that these are the same person. Our
less aggressive name disambiguation scheme applied only within subfields is thus a way, albeit limited, to avoid these
false positive cases.



We also note that, although name disambiguation was only performed within subfields, self-citations (defined in
Section S2E) of each paper were subsequently identified as citations whose author names were identical to citing
author names, regardless of paper subfield. For example, if an author team featuring Sarah Ruth cited any other
paper written by an author team featuring Sarah Ruth, it was identified as a self-citation regardless of either paper’s
subfield.

B. Estimation of publication month

While the year of publication was available for all 1,067,276 papers, the publication month was not available for
38,423 papers (=~ 3.6%). In order to approximate the unknown month m; for each paper i published in year y;,
we considered its lower and upper bounds. The lower bound was set to be the month of publication of the most
recent paper cited by ¢ if the most recent paper was published in year y;, or January otherwise. The upper bound
was set to be the month of publication of the first paper to cite ¢ if the first paper was published in year y;, or
December otherwise. We then approximated m; as the midpoint between the upper and lower bounds. To assess
the validity of this approach, and to understand the associated uncertainty, we performed the same analysis on the
1,067,276 — 38,423 = 1,028,853 papers for which the publication month was available. In this test case, we found
that the average absolute error between the true month and the estimated month was ~ 2.27 months. In contrast,
the average absolute error of naively guessing a publication month between June and July was ~ 2.98, indicating that
our method provides a reasonable approximation.

C. Name-based assignment of author gender categories

We assigned “author gender categories” to papers according to first names of papers’ first and last authors. Gender
was assigned to authors with available first names using Gender API, a paid service that includes statistics for
approximately 6 million unique first names across 191 countries at the time of writing®. We assigned the label ‘man’
(‘woman’) to each author if their first name had a probability > 0.7 of belonging to someone labeled ‘man’ (‘woman’)
according to our sources?. Labels are assigned in the Gender API dataset according to a combination of sex assigned
to children at birth or chosen by adults later, and gender detected in social media profiles.

Our dataset includes n = 1,067,276 papers, for a total of n first authors and n last authors. Among them, we
were able to assign gender labels to both first and last authors in 60% of papers, to only one of either first or last
author in 27% of papers, and to neither the first nor last author in 13% of papers. Among all first and last authors
with unassigned gender labels, 65.4% were due to publishing using initials. To ensure that omitting these authors
in subsequent analyses would not significantly skew our results, we sought to estimate the gender label distribution
among these authors. As a proxy for this author set, we examined the set of authors for which we uniquely matched
initials to first names using our name disambiguation scheme, and successfully assigned author gender labels (see
Section S2 A). Of these 79,592 authors, 66,255 (~ 83.24%) were assigned the label ‘man’ by our algorithm and 13,337
(= 16.76%) were assigned the label ‘woman’ (see the Supplementary Information for details). These numbers are
consistent with the ratios of assigned gender labels of all first and last authors in our dataset, of which ~ 87.92%
were labeled ‘man’ and 12.07% were labeled ‘woman.” Hence, as far as we can measure, the distribution of genders in
unassigned author names is not radically different than that of assigned author names.

We then subdivided papers into author gender categories according to assigned gender labels of first and last
authors. If the first and/or last author’s name was assigned the label ‘woman,” we categorized the paper as W||W. To
increase statistical power, we included all papers in this category with at least one woman-assigned first/last author,
even if the other author could not be assigned a gender label according to our methods. If the first and last author’s
name was assigned the label ‘man,” we categorized the paper as MM.

We emphasize that, although the phrase “author gender category” contains the word “gender,” it need not capture
the true gender identities of all authors. Instead, it expresses a statistical correlation: By ‘woman’ we mean an author
whose name has a probability greater than or equal to 0.70 of belonging to someone identifying as a woman on social
media or in federal documents; likewise, by ‘man,” we mean an author whose name has a probability greater than
or equal to 0.70 of belonging to someone identifying as a man on social media or in federal documents. True gender
identity could only be learned through careful manual research of self-attested gender identity, or already known
through kinship or conversation, and is not accessible via an automated analysis pipeline like the one used in this
paper. However, the author gender category is nevertheless a notably useful proxy of gender for the purposes of this
paper, because it expresses a correlation between name and gender. Names greatly influence perceptions of gender
identity®, with well-known implications for a person’s perceived merit as a scientist®. These perceptions have marked
power to shape citation behavior, irrespective of authors’ true gender identities.



D. Authors of unassigned gender

Through the process of determining author gender categories, we were unable to assign the genders of many authors.
In our final dataset, among the 1,067,276 papers, we were unable to assign the genders of 313,535 first authors, and
259,636 last authors. Among them, we were unable to assign the genders of both the first and last authors for 142,601
papers. This final dataset includes full names for authors whose initials were uniquely matched to full names in the
dataset.

To understand the cause behind these unassigned genders, we quantify how many of these unassigned author
names originate from authors who publish papers under initials. Among the 313,535 first authors with unassigned
genders, 204,578 are unassigned due to publishing under an initialed first name. Among the 259,636 last authors with
unassigned genders, 170,180 are unassigned due to publishing under an initialed first name.

To estimate the gender statistics among authors who publish under initials, we carried out a unique matching of
initialed names to known full names. First, we made a database of non-initialed first names and last names A across
all authors and papers in our dataset. Next, for each first or last author with an initialed first name, we used regular
expressions to match their initials to A. If the initials uniquely matched one first and last name pair, then the initials
were replaced with the non-initialed first and last name. Through this method, we uniquely identified the first and
last names of 88,780 first and last authors, among which we assigned genders for 79,592 authors. Among these authors
with uniquely identified initials and assigned genders, 66,255/79,592 (=~ 83.24%) were assigned “man,” and 13,337
(= 16.76%) were assigned “woman.” These numbers are consistent with the authors of assigned genders in the entire
dataset. Specifically, among the 1,067,276 - 313,535 = 753,741 first authors with assigned genders and 1,067,276 -
259,636 = 807,640 last authors with assigned genders (for a joint total of 1,561,381 first and last authors with assigned
genders), we assigned 1,372,849 / 1,561,381 (= 87.92%) “man,” and 188,532 / 1,561,381 (= 12.07%) “woman.”

E. Reference list cleaning procedure

We pared down each paper’s reference list into a “clean” version suitable for our analysis, which we used for all
investigations of citation behavior (unless indicated otherwise). We determined citations according to DOI: In each
paper’s reference list, we gathered the set of cited DOIs and determined which of those matched any other paper’s
DOI in our data set. Of the 1,067,276 papers in our data set, 15,207 papers had missing DOIs, or &~ 1.42% of all
papers.

From each reference list, we removed self-citations, citations to papers not in our dataset, and citations to papers
with authors whose names could not be assigned to a gender category. We chose to remove self-citations from all
analyses of citation behavior in order to focus on the influence of perception of other authors’ gender category on
external citation behavior. Self-citations were defined somewhat restrictively as references to papers for which either
the cited first or last author was also the citing first or last author. This choice reflected the overall focus of the
paper on the citation statistics of citing and cited teams consisting of first and last authors on all papers. We note
that in a related study of citation behavior in neuroscience journals, it was shown that including self-citations did not
result in meaningful differences in overall over-/under-citation trends’. Additionally, alternate (broader) definitions
of self-citations were shown to yield highly similar results to our more restrictive definition of papers for which either
the cited first or last author was also the citing first or last author”. Section S4H explores the influence of including
self-citations in the analyses presented in this paper.

S3. SUPPLEMENTARY METHODS: ANALYSIS
A. Probability estimation of author gender category according to paper characteristics

To quantify over-/under-citation behavior, we first developed a gender-blind null model predicting the probability
that papers were written by MM or W||W author teams according to a set of paper characteristics enumerated below.
Then, over any set of reference lists, we could tally the number of cited papers written by MM or W||W author teams
and compare these quantities to the expected numbers given by the gender-blind null model. The characteristics we
used to predict MM or W||W authorship for each paper were (i) month and year of publication, (ii) first and last
authors’ combined number of papers in the dataset, (iii) total number of authors, (iv) publishing journal, and (v)
categorization as a research or review article (Fig. 2a). Specifically, we fit a generalized additive model (GAM) on
the binomial outcome {MM, W||[W} with predictive features as defined above. We fit this model to all papers in our
dataset whose authors’ names could be assigned gender categories. To fit the GAM, we utilized the ‘mgev’ package in
RS, using penalized thin plate regression splines for estimating smooth terms of features (i), (ii), and (iii) described



above. We note that we used the logarithm of feature (iii) and a winsorized version of feature (ii), capped at 300
(representing the top 0.6% of papers), to ensure that we fit the GAM successfully. Univariate thin plate splines were
used for the smooth terms, and no interactions between variables were included in the model.

For each article, the GAM then yields a predicted probability of MM or W||W authorship; we interpret and utilize
these probabilities as approximations of the proportion of similar articles (i.e., articles with comparable values of the
above characteristics) written by each group. We then aggregate these probabilities across reference lists, allowing us
to calculate the proportions of MM and W||W citations that would be expected if references were drawn in a gender-
agnostic manner from pools of characteristic-matched papers. As a result, we can assess citation imbalances that
account for the potentially confounding factors represented by those characteristics. For example, suppose an author
team cites more papers from Physical Review Letters (PRL) than any other journal in the data set. Simply calculating
the fraction of that author team’s cited papers that are MM, and comparing that fraction with the overall field’s MM
paper proportion, would represent an estimate of citation imbalance confounded by that author team’s preference to
cite PRL. Since PRL skews toward a higher proportion of MM papers, the author team’s higher proportion of cited
MM papers could potentially be explained by the simple fact that they cite in a gender-agnostic manner from PRL. To
address this issue, we use the GAM to produce estimates for the PRL-specific (and other paper characteristic-specific)
MM and W||W paper proportions, so that we can compare author teams’ cited MM (and W||W) proportions to more
specific expected proportions in order to compute less confounded estimates of citation imbalance.

Once fit, the GAM predicts author gender category according to paper characteristics in a manner that is consistent
with observed author gender categories. Figs. Sla and b show distributions of the GAM-predicted probabilities that
papers are written by MM and W||W teams, for all MM and W||W papers in the data set. GAM-predicted probabilities
that papers are written by MM teams are higher for papers actually written by MM teams (median 0.77) than for
papers actually written by W||W teams (median 0.70). GAM-predicted probabilities that papers are written by
W||W teams are higher for papers actually written by W||W teams (median 0.30) than for papers actually written by
MM teams (median 0.23). Wilcoxon rank sum tests (or Mann-Whitney U tests) indicate that both GAM-predicted
probability distributions for papers actually written by MM teams are shifted with respect to their corresponding
GAM-predicted probability distributions for papers actually written by W||W teams (p < 2.2e-16 in both cases).

The fitted GAM also shows variation in author gender category as a function of paper characteristics that is similar
to observed variation. The left panels of Fig. S2 show partial effect plots for all paper characteristics included in the
GAM. In other words, they show the relationship between each paper characteristic and the probability (specifically,
the log odds ratio) that papers are written by W||W teams with respect to MM teams. The right panels of Fig. S2
show the actual fraction of papers written by MM and W||W teams as a function of the paper characteristics. For all
paper characteristics, the partial effects modeled by the GAM generally track the actual trends observed in the data
set. Predictions indicate that papers are more likely to be written by women over time, as the publication month from
the earliest publication date in the data set (“month from base”) increases (Fig. S2a). Papers are predicted most
likely to be written by women in the journals Astronomy & Astrophysics, Monthly Notices of the Royal Astronomical
Society, and Soft Matter, and least likely to be written by women in the journals Nuclear Fusion, Reviews of Modern
Physics, and Nature Photonics (Fig. S2b). Papers are predicted to generally be less likely to be written by women as
the first and last authors’ combined number of papers in the data set, or author seniority, increases (Fig. S2c). Papers
are predicted to generally be more likely to be written by women as the number of direct co-authors, or the log of
paper team size, increases (Fig. S2d). Note that there is a dip in the partial effect modeled by the GAM at extremely
high values of paper team size; this is an artifact of the spline estimation of the GAM, and occurs at values of team
size that lie at the upper limit of the data range. And finally, review papers are predicted to be more likely written by
women with respect to non-review papers (Fig. S2e). The proportion of null deviance in author gender category that
is explained by paper characteristics is 6.1%. This suggests, perhaps unsurprisingly, that author gender cannot be
reliably predicted from these five paper characteristics. Importantly, however, our goal is only to remove the potential
confounding effects of these characteristics, not to create a gender prediction model. For example, if more men publish
in Journal A, and Journal A is more highly cited regardless of gender, this could induce a spurious gender gap unless
journal is accounted for when quantifying citation bias. By using this model, we are able to estimate and account for
the relationships between author gender and paper characteristics, however large or small those relationships may be.
Table S2 shows coefficients for linear terms in the GAM, errors of those terms, and p-values for the null hypothesis
that each linear term is zero. Table S3 shows the effective degrees of freedom of all smoothed terms in the GAM, and
p-values for the null hypothesis that each smooth term is zero. p-values are marked with * x x if they are less than
0.001, *x if they are less than 0.01, and x if they are less than 0.05. Details regarding all of these parameters and
accompanying tests of statistical significance can be found in the documentation of the ‘mgcv’ package in RE.



B. Calculation of over-/under-citation

For a given group of citing papers, we defined its over/under-citation of each author gender category as the percent
difference of observed citations from gender-blind expectation. Over-/under-citation of MM papers, for example, is
given by (opar — enrar)/enrm * 100, where opgps is the (observed) number of citations given to MM papers by the
citing papers, and e,z is the expected number of MM citations predicted by the gender-blind model described in the
previous section. More specifically, eprps is computed by summing over the GAM-estimated probabilities that each
citation given by the group belongs to the author gender category MM.

C. Subfield delineation

To understand how citation practices vary between disciplines, we grouped journals into defined “subfields.” The
boundaries between subfields were drawn according to a combination of (i) pre-defined journal categories culled from
the breakdown of the Physical Review family of journals and journal categories defined by Web of Science, and (ii)
post-hoc citation network clustering to verify that journals within subfields cited each other to at least some degree.
We also sought to maintain somewhat equitable numbers of journals within each subfield for subsequent analyses of
citation behavior on the subfield level. The resultant subfields and their constituent journals are shown in Fig. 1b.

Initial journal selection according to consideration (i) above is described in Section S1A. For consideration (ii)
above, citation network visualization and clustering, we first built a directed citation network between the 35 journals
in our dataset (Fig. S3, shown with the original subfield boundaries built according to consideration (i)). Each
element J;; of the matrix in Fig. S3 represents a directed citation flow (weighted edge) between citer journal (node)
i and cited journal (node) j: J;; = N;j/ Zj N;j, where N;; is the number of citations given by p;, the set of counted
papers published in journal 7, to p;, the set of counted papers published in journal j. To most accurately capture
the citation dynamics we analyzed in the main text, we counted p; and p; in different ways: While p; includes every
paper in our dataset, p; includes only those papers published between 2009 and 2020, with “cleaned” reference lists of
length > 0. Details regarding the reference list cleaning procedure can be found in the main text. We row-normalized
N;; when creating the directed citation network to account for differing total numbers of citations given by the set of
papers in each journal.

We then performed a clustering analysis on this citation network, to determine journal (node) subsets whose intra-
citation (edge weight) is dense and whose inter-citation (edge weight) is sparse. We used a generalized Louvain®
community detection algorithm, freely available through the MATLAB Brain Connectivity Toolbox'?, to maximize a
modularity quality index @ defined as'!:

QE EZ[J”_‘PZ](S(C“C]) (Sl)
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The scalar P;; is the expected edge weight between nodes ¢ and j in a suitably-chosen null model, s = 3", j Jij is the
total edge weight of the network, and 6(c;, ¢;) is a Kronecker delta that is 1 if ¢ and j are in the same community
(d.e. if community indices ¢; = ¢;) and 0 otherwise. The modularity index @ can thus be thought of as the difference
between the fraction of total edge weight that connects within-community nodes and that expected fraction under
some null model. Many different null models are employed in the literature, each specific to the data and scientific
question of interest'?. Here, we used a simple null model for a directed network!3:

k;mtk;n

where k9%t = Zj Jij is the weighted out-degree of node ¢, and k;” = ), Jij is the weighted in-degree of node j. The
quantity k9“!/s, the fraction of total edge weight out of node 4, is the weighted probability that an edge chosen at
random flows out of node 7. Similarly, k;” /s, the fraction of total edge weight into node j, is the weighted probability
that an edge chosen at random flows into node j. The quantity P;;/s is thus equal to the joint weighted probability
that, were an edge to be chosen at random, it would flow from i to j. Maximization of @ is accomplished by varying
¢, the partition of network nodes into communities. An important note is that, in practice, the non-symmetric
modularity matrix B;; = % [Jij — Pi;] is symmetrized before maximizing () for algorithmic ease'®; this operation

does not change the scalar @ since ), j Bij; =5, j Bj;. We also note that the algorithm that maximizes ) is not
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guaranteed to find the global optimum'*, so we employed a modularity fine-tuning scheme in which Q maximization



was attempted and the resultant node partitioning fed back into the algorithm as an initial guess, resulting in a new
maximal @ value and partitioning, until modularity ceased to increase.

The resultant clustering is shown in Fig. S4. Note that journals in the “high energy” half of the originally
defined “high energy physics and astronomy” subfield (Journal of High Energy Physics, Physical Review D) are in a
different community than the astronomical journals in that subfield (Astrophysical Journal, Monthly Notices of the
Royal Astronomical Society, Astronomy & Astrophysics), with very limited inter-citation among those two halves.
Furthermore, among other changes, the journal Physics Letters B has been clustered in the same community as the
high energy physics journals, with strong inter-citation between these three journals. These observations motivated
our final decisions regarding subfield delineation, shown in Fig. S5. We split the high energy journals from the
astronomy and astrophysics journals, forming two separate subfields, and added Physics Letters B to the high energy
subfield both because of its citation communication with the other journals in that subfield and to bolster the number
of journals (3) in that subfield. We note that subfields could be defined in many ways, and the procedure just outlined
is but one way of drawing boundaries in order to make observations on the level of subfield.

D. Alphabetical author ordering in high energy physics

We define the author gender category of papers according to the genders of those papers’ first and last authors.
The assumption we make with this definition is that author lists are ordered such that first and last author positions
designate authors who are lead researchers on the paper and authors who are senior/supervisory researchers on the
paper, respectively. This is not necessarily the case for papers in the high energy physics subfield, whose authors
are often ordered alphabetically. In this section, we quantify the degree of alphabetical author ordering in the high
energy physics subfield and explore its consequences for our analysis.

Fig. S6a shows the fraction of all multiple-author papers in each subfield whose first and last authors are in
alphabetical order. This fraction is &~ 0.875 in the high energy physics (HEP) subfield, well above the value it
would have according to chance (0.5). Note that other subfields also other show alphabetical ordering at rates above
chance, most notably the nuclear physics subfield; however, the HEP subfield shows significantly greater alphabetical
ordering. Fig. S6b shows the fraction of all multiple-author papers in the HEP subfield whose first and last authors
are in alphabetical order, grouped by publication year. Although this fraction has dropped slightly, from =~ 0.878 in
1995 to ~ 0.839 in 2020, it has remained well above 0.5 for every year covered in our data set. Finally, Fig. S6c shows
the fraction of all multiple-author papers in the HEP subfield whose first and last authors are in alphabetical order,
grouped by author gender category. Fractions are approximately equal for HEP papers written by MM vs. W||W
teams, indicating that authors of papers classified as W||W are equally likely to be alphabetically ordered as authors
of papers classified as MM.

Next, we explore the impact of alphabetical author ordering on our author gender categorization scheme. Suppose
that papers have a “true” ordering that reflects author seniority or contribution, and that alphabetizing author names
is a random reshuffling of this order. Let each paper have N total authors, and n < N authors categorized as women.
The probability that alphabetizing author names results in a paper given the author gender category W||W is the
probability a woman is picked at random from the N authors for the first author position, plus the probability that a
woman is picked at random from the N authors for the last author position, minus the probability that two women
are picked at random from the N authors for both the first and last author position. The subtraction is necessary to
avoid double-counting, since the first two events are not mutually exclusive. Then,

pa<W|W>§$Jm, (3)

where p,(W||W) is the probability that an alphabetized author list is designated W||W. Thus, alphabetized papers
in the HEP subfield are designated W||W with a probability that depends only on n/N, the fraction of authors in
the author list that are women, and N, the size of the author list. As a result, the designation W||W for these
papers reflects only the demographics of the author list, and not the contributions or seniority of women authors in
the author list. Papers designated W||W in HEP might therefore be argued to constitute a broader class (of papers
with randomly selected women co-authors) than those designated W||W in other subfields, for which women must be
senior or highly contributing authors. The GAM should still be able to fit expected citation rates for this broader
paper category, since it predicts author gender category according to publication journal and year, which correlate
with n/N, and the log of paper team size, which directly encodes N. Thus, that demographic and citation imbalances
still exist for this broader category of HEP W||W papers, as shown in the main text and throughout this supplement,
is a striking result.



E. Coauthorship network determination

In order to study the dependence of over-/under-citation behavior on the scientific network of authors and papers,
we quantified a co-author network for each paper i, consisting of all papers in our data set published the year of paper
1’s publication or earlier. Each node corresponds to a paper, and edges are drawn between nodes if the corresponding
papers share at least one author. Note that edges exist between nodes if any author is shared between papers, not just
first or last authors. Neighborhoods within this co-author network around paper i can then be defined to indicate sets
of papers of varying proximity to paper i. For example, neighborhood C; () consists of all papers of path length < 1
from paper ¢, or all papers written by all of the co-authors of paper i (necessarily including paper ). Neighborhood
Co(i) consists of all papers of path length < 2 from paper i, or all papers written by all of the co-authors of paper ¢
and all of their co-authors. We could then quantify the over-/under-citation behavior of classes of papers as a function
of the proximity of cited papers to each citing paper on its network. More specifically, for each paper i, we considered
two separate subsets of its “cleaned” reference list (Section S2E): those cited papers within Cz(4) (thus more proximal
to i), and those cited papers outside of C5(i) (thus less proximal to 7). We then pooled these separate sets of cited
papers according to the author gender category of the citing papers, and calculated over-/under-citation of MM and
W||W papers within these groups of more proximal and less proximal cited papers.

We also quantified homophily in the co-authorship network around each paper i, by defining the man-author over-
representation (MAgyerrep) in the network around paper i. We defined this measure to be the difference between the
proportion of men within Cy(7) (excluding the co-authors of paper i) and the proportion of men in the entire field
when paper ¢ was published. Note that for all co-authors in C5(i) who were neither the first nor last author of any
paper in our data set, gender had not been algorithmically assigned. Thus, all proportions were taken only over those
co-authors whose gender was assigned.

S4. SUPPLEMENTARY RESULTS

The following sections contain further details regarding the results presented in the main text. Each subsection
header in the Results section in the main text has an identical corresponding header here for ease of cross-reference.

A. Time-varying demographics of published papers

Fig. 1 presents a demographic overview of the data set, and the main text describes general trends within that data.
Note that although woman-authored (W||W) papers represent a small proportion of those tracked in Fig. 1a, the
proportion of papers authored by first and last authors with names assigned to women (WW) remains significantly
lower, growing from 1.7% in 1995 to only 3.6% in 2020. The fastest growing subset of woman-authored papers are
those with assigned woman first authors and assigned man last authors (WM): the fraction of these papers grew from
0.06 in 1995 to 0.14 in 2020, for a growth rate of 229% over 25 years. The strong growth of this subset of papers
might reflect the increasing number of junior woman scientists across physics. Other growth rates are 213% for MW
papers and 210% for WW papers over 25 years.

Although the proportion of W||[W papers increases in all subfields, individual journals vary significantly in that
proportion and in its rate of change (Fig. 1b-c). Averaged over years, journals with the lowest fraction of W||W
papers are Reviews of Modern Physics (0.11), Journal of High Energy Physics (0.15), and Journal of Fluid Mechanics
(0.15). These three journals also have the lowest fraction of W||W papers published in 2020 among all journals,
indicating that this trend is not merely due to their older age and the general increase of woman authors over time.
Journals with the highest fraction of year-averaged W||W papers are Nanoscale (0.41), Soft Matter (0.40), and ACS
Applied Materials € Interfaces (0.40).

B. Citation imbalance exists & varies by citing venue

Fig. 2 shows that (i) the citation behavior of the papers in our dataset is imbalanced with respect to the cited
author gender category, and (ii) this imbalance varies according to citing subfield and journal. The main text discusses
general trends in this behavior according to subfield. We note here that, in calculating citation gaps and trends, we
consider only the citation behavior of papers published in 2009 or later, since these papers are more likely than those
published earlier to cite other papers in our (1995 — 2020) dataset. To increase statistical power, the citation behavior
reported in this section is aggregated over all papers published in 2009 or later, even those that could not be assigned
to an author gender category.



As shown in finer detail in Fig. 2d, citation behavior at the journal level varies more widely still. Here, each point
in the space of MM over-/under-citation versus W||W over-/under-citation shows the collective citation imbalance of
papers grouped according to their publishing journal. The data follow an approximately linear trend with negative
slope, indicating the correlation between over-citation of MM papers and under-citation of W||W papers. Journals
that lie more deeply in the lower right quadrant host papers that collectively exhibit greater citation preference for
MM papers, whereas journals that lie in the upper left quadrant host papers that collectively exhibit greater citation
preference for W||W papers. Most journals are located in the lower right quadrant, indicating their preference toward
MM over-citation, and only three journals (Journal of Nuclear Materials, Astronomy & Astrophysics, and Soft Matter)
show a statistically significant preference for citing W||W papers.

C. Citation imbalance varies by citing actor

Fig. 3 demonstrates that citation behavior varies according to citing author gender category. The main text
contains a concise description of this variance; here, we address it in greater detail. MM citing papers published in
2009 or later over-cite other MM papers by 2.05%, and under-cite W||W papers by 6.53%, for a gender citation gap
of approximately 8.58% (Fig. 3a). By contrast, W||W citing papers published in 2009 or later over-cite other W||W
papers by 3.56%, and under-cite MM papers by 1.38%, for a citation preference in favor of other W||W papers of
approximately 4.94% (Fig. 3a).

These citation behaviors vary widely across subfield (Figs. 3c-d) and journal (Fig. S7). MM papers in the general
physics subfield show the highest citation gap, 16.47%, in favor of other MM papers. MM papers in the nuclear and
atomic/molecular/optical subfields show the next highest citation gaps, each above 15%. By contrast, W||W papers
in the astronomy/astrophysics and soft matter/biophysics subfields exhibit a citation preference toward other W||W
papers, resulting in citation gaps in favor of other W||W papers of 8.42% and 6.53%, respectively. Interestingly,
citation preference in favor of other W||W papers does not exist for W||W citing papers in the general physics,
atomic/molecular/optical, and condensed matter subfields. Rather, papers in these subfields show under-citation of
other W||W papers and over-citation of MM papers. W||W papers grouped into the general physics subfield show the
greatest citation gap (8.8%) in favor of MM papers.

D. Stable and growing trends in citation imbalance over time

Fig. 3 also shows trends in citation imbalance over time, grouped according to citing author gender category and
citing subfield. The main text contains concise descriptions of these trends; here, we discuss in greater detail. The
citation gap in favor of MM papers exhibited by MM citers is larger in 2020 than in 2009 (Fig. 3b, red lines), due
to an overall increase in MM over-citation and W||W under-citation over time. The fraction of citations actually
given by MM citers to MM (W||W) papers over time maintains a steady positive (negative) gap with respect to the
fraction expected to be given according to our model (Fig. S8a). By contrast, W||W citers show a consistent citation
preference in favor of other W||W papers with a markedly different trend over time (Fig. 3b, blue lines). For these
citers, the citation gap in favor of other W||W papers decreases over time, in contrast to the increasing citation gap in
favor of other MM papers shown by MM citers. The fraction of citations given by W||W citers to MM (W||W) papers
over time shows a narrowing negative (positive) gap with respect to the fraction expected to be given according to
our model (Fig. S8b). The data indicate an approach toward citation parity over time by W||W citers.

When grouped according to subfield, citation behavior shows a variety of different trends over time (Figs. 3e,
S9, S10). Citation gaps between MM authored papers and W||W authored papers vary in magnitude according to
subfield, but are relatively stagnant over time in many cases (within error bars). Two subfields that notably do not
exhibit this behavior are the general physics and condensed matter subfields, for which the citation gap increases
between 2009 and 2020, to 16.67% and 10.7% in 2020, respectively.

E. Citation imbalance varies by citation proximity

Fig. 4 and the accompanying discussion in the main text explore differences in citation behavior according to
whether citations reference work with which authors are likely to be familiar. Here, we discuss these trends in
greater detail. We first note that reference lists of citing papers contain a range of reference proportions that are
deemed proximal or familiar according to the two definitions of proximity detailed in the main text (Fig. S11).
We additionally note that precise definitions of subfields do not seem to affect overall conclusions regarding citation
behavior for within-subfield vs. outside-subfield citations: Fig. S12 shows this citation behavior given the subfield
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boundaries informed entirely by post-hoc clustering described in Section S3 C and illustrated in Fig. S4, and it is
qualitatively and quantitatively similar to the behavior displayed in Fig. 4a in the main text.

With both definitions of proximity or familiarity, we find similar results regarding the total citation gap between MM
and W||W authored papers: For the set of unfamiliar citations, the citation gap is larger, with greater over-citation
of MM papers and greater under-citation of W||W papers (Fig. 4a-b, black symbols). Out-of-subfield MM papers
are over-cited by 1.90%, and out-of-subfield W||W papers are under-cited by -7.36%, while these rates are 0.66%
and -1.80% for within-subfield MM and W||W papers, respectively. Co-author-distant MM papers are over-cited by
1.29%, and co-author-distant W||W papers are under-cited by -4.34%, while these rates are 0.57% and -1.39% for
co-author-proximal MM and W||W papers, respectively. For reference, we note that these values for all forms of
citation, independent of familiarity, are MM over-citation of 1.06% and W||W under-citation of 3.17% (Fig. 2b).

The suppression of the “familiar citation gap” and the enhancement of the “unfamiliar citation gap” together arise
from the cumulative effects of two very different citation behaviors according to citing author gender category. Across
familiar citations, both MM (Fig. 4a-b, red symbols) and W||W (Fig. 4a-b, blue symbols) citing teams show enhanced
citation preference for their respective author gender categories. That is, MM teams preferably cite MM papers, while
W||W teams preferably cite W||W papers. We note that these competing effects may be partially explained by an
overall homophilic enhancement in the local co-authorship network around each paper, revealed by higher man-
author overrepresentation in co-authorship networks around MM papers and lower man-author overrepresentation in
co-authorship networks around W||W papers (see Supplementary Methods, Fig. S13).

Across unfamiliar citations, however, MM and W||W teams differ in their citation behavior. For W||W teams,
citation preference for W||W papers is approximately erased. By contrast, for MM teams, citation preference for
MM papers is not erased. Instead, this preference is enhanced for out-of-subfield citations, and slightly reduced but
still significant for co-author-distant citations. Thus, we find that W||W teams preferably cite familiar W||W papers
and cite unfamiliar W||W and MM papers approximately equitably. MM teams over-cite familiar MM papers and
under-cite familiar W||W papers, a trend that is even more pronounced for unfamiliar papers. The overall result is a
smaller familiar citation gap, due to the competing citation behaviors of W||W and MM citing teams, and a larger
unfamiliar citation gap in favor of MM papers, due to the MM citing papers’ persistent citation preference for other
MM papers even when citing unfamiliar references.

Note that, although citation imbalance across familiar citations is approximately equal and opposite for W||W and
MM citing teams (for both definitions of familiarity), it is not distributed equally across W||W and MM cited papers.
Rather, W||W teams exhibit a citation preference for W||W papers (vertical coordinate of the dark blue markers in
Figs. 4a,b) that is about double that of MM teams for MM papers (horizontal coordinate of the dark red markers
in Figs. 4a,b). By contrast, MM teams under-cite W||W papers (vertical coordinate of the dark red markers in Figs.
4a,b) at a rate that is about double the under-citation of MM papers by W||W teams (horizontal coordinate of the
dark blue markers in Figs. 4a,b).

F. Additional correlates of citation imbalance

Fig. 5 and the accompanying discussion in the main text investigate trends in citation behavior according to two
additional correlates: the relative proportion of W|[W published papers in each journal, and the reference list length
of citing papers. Here, we provide more detail about both analyses. For the former, we observe that the 35 journals
investigated in this paper generally show an increasing time-aggregated citation preference for W||W papers with
an increasing time-aggregated fraction of W||W papers published (Fig. 5a). Correspondingly, the time-aggregated
citation preference for MM papers decreases with an increasing time-aggregated fraction of W||W papers published
(Fig. S14).

For individual citing papers, we observe a collective effect in which papers with longer reference lists tend to exhibit
increased citation preference for W||W papers (Figs. 5b, S15). This trend holds independently for both MM and
WI||W citing teams, despite the fact that W||W papers in our dataset contain longer reference lists in comparison with
MM papers (Fig. S16). Notably, the trend also remains stable over time, despite the fact that reference list length
within our dataset generally increases over time (Fig. S17). More specifically, we group reference lists according to
citing author gender and publishing year, and find that slopes of linear fits of MM over/under-citation as a function of
reference list length are consistently negative and similar in magnitude for MM and W||W citing teams over publishing
years between 2009 and 2020. Similarly, slopes of linear fits of W||W over/under-citation as a function of reference list
length are consistently positive, stable over time, and almost identical in magnitude for MM and W||W citing teams
(Fig. S18). Effectively, MM (W||W) citing teams show a reduction of approximately 0.43% (0.7%) MM over/under-
citation for every 10 citations added to their reference lists. Both citing teams show an increase of approximately
1.5% W[|W over/under-citation for every 10 citations added. Because the coefficient of determination of each linear
fit is low (Fig. S19) due to the high variance of our data, the relation should be considered a weak but significant
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collective effect rather than an exact measure of correlation for any particular paper subset.

We note that to eliminate potentially spurious effects of papers whose reference lists contain few within-database
citations for which we could categorize author gender, we only performed our linear fitting procedure on papers
with reference lists containing 20% or more within-database and author-gender-categorized citations. Results remain
consistent if this threshold percentage is doubled to 40%, and results are qualitatively similar even if this threshold is
removed (Fig. S20).

G. Citation imbalance of sub-categories of W||W papers

Sub-categories of papers written by at least one first or last author whose name was assigned “woman” were
combined into the larger W||W category in the main text (Fig. 1a). This combination was necessary for statistical
purposes: The demographic realities of the field of physics meant that papers written by the WM, MW, and WW
teams on their own formed too-small subsets of our dataset with noisy citation statistics. However, examination of
these sub-categories of W||W papers is quite useful, and would ideally be included in any full analysis, to distinguish
between papers with women in junior vs. senior author positions. Here, we explore the citation behavior of these
WI||W sub-categories.

Fig. S21a shows the over-/under-citation behavior of all sub-categories of W||W papers, calculated over all papers
in each sub-category published between 2009 and 2020. The over-/under-citation behavior of the larger W||W citer
category is also shown for comparison with each sub-category. Papers with names assigned to men in the first or last
author position, the WM and MW sub-categories, show lesser over-citation of W||W papers, and lesser under-citation
of MM papers, than the broader W|[W citer category. Of these two sub-categories, the WM sub-category shows
larger over-citation of W||W papers and under-citation of MM papers. By contrast, papers with names assigned to
women in the first and last author position, the WW sub-category, show much larger over-citation of W||W papers,
and larger under-citation of MM papers, than the broader W||W citer category. Taken together, the data imply that
WW teams especially drive the overall citation behavior of the W|[W citer category, and that the effects of women
first (“junior”) authors are especially correlated with the over-citation of W||W papers and the under-citation of MM
papers.

Figs. S21b-f show over-/under-citation behavior of all sub-categories of W||[W papers over time. As in panel a, the
over-/under-citation behavior of the larger W||W citer category is also shown for comparison with each sub-category.
The data show similar trends to panel a: The over-/under-citation behavior of WM and MW teams is less favorable
toward W||W papers than the behavior of the broader W||W citer group, with MW citers showing less favoritism
toward W||W papers than WM citers. By contrast, the over-/under-citation behavior of WW papers is even more
favorable toward W||W papers than the behavior of the broader W||W citer group. Importantly, for both WM and
WW citing groups, this favoritism toward W||W papers decreases in magnitude from 2009 to 2020, in a similar manner
to the trend over time exhibited by the broader W||W citer category. Note that the WU and UW sub-categories
(papers in which one of the first or last author’s names was assigned to the woman gender category, and the other
name could not be assigned to a gender category) are shown for completeness in panels a, e, and f, but show noisy
statistics and cannot be clearly interpreted in terms of assigned author gender.

H. Effects of self-citation on citation behavior

In the main results presented in this paper, self-citations were removed from all reference lists before performing any
analyses of citation behavior. We made this choice because the phenomenon of self-citation is quite different than the
phenomenon quantified in this paper, regarding how the gender perception of others influences authors’ engagement
with the rest of their field. Self-citation has been studied elsewhere in great detail [e.g., see Ref. 15], and its inclusion
in our analyses would necessarily enhance gender homophily in citation behavior due to our definitions of author
gender category and self-citation (see Section S2E). In this section, we explore the effects of including self-citations
in our analyses.

We first note that MM teams and W||W teams self-cite at different rates. Fig. S22a shows overlaid histograms of
the number of self-citations in all MM and W||W papers in our data set. These distributions each have medians of
1, but the mean of the MM distribution is larger (= 1.57) than that of the W||W distribution (= 1.40). Moreover, a
Wilcoxon rank sum test (or Mann-Whitney U test) of the alternative hypothesis that the MM self-citation distribution
is shifted to the right of the W||W self-citation distribution has a p-value < 2.2e-16, indicating that indeed the MM
distribution is shifted toward higher self-citation numbers than the W||[W distribution. This is an especially striking
result in the context of Fig. S16, which shows that W||W citing papers generally contain longer reference lists than
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MM citing papers. In other words, MM teams cite fewer papers in general than W||W teams, and still cite themselves
more, in general, than W||W teams.

These self-citations, however, do not change the overall patterns of over-citation of MM papers and under-citation of
W||W papers. Fig. S22b shows the over-/under-citation of MM and W||W papers by all citing papers in the data set
published between 2009 and 2020, both excluding self-citations from reference lists (dotted lines) and including self-
citations in reference lists (colored bars). Overall over-citation of MM papers is approximately the same both including
and excluding self-citations, and the under-citation of W||W papers is slightly larger when including self-citations in
reference lists.

When over-/under-citation is calculated separately according to citing author gender category, the homophilic
effects of including self-citations in the analysis become much more obvious. Fig. S22¢ shows over-/under-citation of
MM and W||W papers, for all MM papers in the data set published between 2009 and 2020 (red) and all W||W papers
in the data set published between 2009 and 2020 (blue). Over-/under-citation measures both excluding self-citations
from reference lists (dotted lines) and including self-citations in reference lists (colored bars) are shown. The inclusion
of self-citations in MM papers enhances their over-citation of MM papers and under-citation of W||W papers, and
the inclusion of self-citations in W||W papers enhances their over-citation of W||W papers and under-citation of MM
papers. These homophilic effects compete with each other, however, leading to the much smaller effects in overall
over-/under-citation shown in Fig. S22b. We note that in calculating all over-/under-citation measures shown in
Figs. S22b and c, we cleaned each reference list in an identical manner to that discussed in Section S2E, with the
only difference being that we either explicitly excluded self-citations (as in the primary analyses) or included them.

I. Co-authorship neighborhoods differ according to citing author gender category

In the main text of the paper, we calculated differences in citation behavior when authors were citing within their
local co-authorship neighborhoods vs. outside of those neighborhoods. Those analyses found that both MM and
W||W teams tend to exercise significant homophily when citing within their local co-authorship neighborhoods, with
MM papers over-citing other MM papers and W||W papers over-citing other W||W papers. By contrast, when citing
outside their local co-authorship neighborhoods, W||[W teams tend to cite approximately equitably, while MM teams
tend to continue over-citing other MM papers and under-citing W||W papers. In this section, we will explore these
co-authorship neighborhoods in more depth.

Figs. S23a and b show distributions of co-authorship neighborhood size at two different scales, |C1| and |Ca| (defined
in Section S3E), for MM vs. W||W papers. Results show that these local neighborhood sizes tend to be larger around
W/|W papers in comparison to MM papers. The median of |C;| around W||W papers is 38, larger than the median
of |C1| around MM papers (32). A Wilcoxon rank sum test (or Mann-Whitney U test) of the alternative hypothesis
that the MM distribution is shifted with respect to the W||W distribution has a p-value < 2.2e-16, indicating that
indeed the MM distribution is shifted toward lower |C1| values with respect to the W|[W distribution. Similarly, the
median of |Cz| around W||W papers is 974, larger than the median of |C2| around MM papers (587). A Wilcoxon
rank sum test of the alternative hypothesis that the MM distribution is shifted with respect to the W||W distribution
also has a p-value < 2.2e-16. These trends also hold when considering only the neighborhoods around papers with a
limited number of direct co-authors (< 20), which removes the influence of giant collaboration papers (Figs. S24a,b).
For these papers, the median of |C;| around W||W papers is 37, while that around MM papers is 32. The median of
|C2| around W||W papers is 932, while that around MM papers is 577. Wilcoxon rank sum tests indicate that the
distributions of |C;| and |C2| around MM papers are shifted with respect to their W||W counterparts (p < 2.2e-16 in
all cases). These results likely are a consequence of the fact that W|[W papers tend to have larger numbers of direct
co-authors than MM papers. The distribution of the number of co-authors on W||W papers in the data set has a
median of 4, while the median number of co-authors on MM papers in the data set is 3. A Wilcoxon rank sum test
indicates in this case also that the MM distribution is shifted toward lower co-author numbers with respect to the
W||W distribution (p < 2.2e-16). This phenomenon can also be seen in Fig. S2d: The ratio of W||W papers to MM
papers trends toward higher values as the log of paper team size, or number of direct co-authors, increases.

Next, we analyze the gender makeup of local co-authorship neighborhoods around MM and W||W papers. Figs.
S23c¢ and d show distributions of the fraction of MM papers, p(M M), in the C; and Cs neighborhoods surrounding
MM vs. W||W papers. Fractions are taken with respect to only those papers in each local neighborhood whose author
gender category is known: p(M M) € C,, is the number of MM papers in C,, divided by the total number of MM and
WI||W papers in C,, around each paper. Results show that MM papers contain a higher fraction of MM papers in
both C; and Cy in comparison to W||W papers. The median of p(M M) € C; around MM papers is 0.90, while that
around W|[W papers is 0.54. Wilcoxon rank sum tests indicate that these distributions are shifted with respect to
each other (p < 2.2e-16). The median of p(M M) € Cy around MM papers is 0.80, while that around W||W papers
is 0.69. Wilcoxon rank sum tests also indicate that these distributions are shifted with respect to each other (p <
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2.2e-16). These trends also hold when considering only the neighborhoods around papers with a limited number of
direct co-authors (Figs. S24c,d). For these papers, the median of p(M M) € C; around MM papers is 0.90, while
that around W||W papers is 0.54. The median of p(M M) € Cy around MM papers is 0.80, while that around W||W
papers is 0.70. Wilcoxon rank sum tests indicate that the distributions of p(M M) € C; and p(M M) € Cy around MM
papers are shifted with respect to their W||W counterparts (p < 2.2e-16 in all cases).

We note that the gender makeup of local co-authorship neighborhoods could influence citation behavior when
authors are citing within their local co-authorship neighborhoods vs. outside of those neighborhoods. If we assume
that (i) expected citation rates of MM and W||W papers are not significantly different for papers within each Co
neighborhood vs. outside of it, and (ii) citations of each MM paper within its C; neighborhood are a random sampling
of that neighborhood, we can conclude that the homophilic enhancement of MM papers in Co neighborhoods around
MM papers leads to their greater over-citation of MM papers. The same would apply to homophilic enhancement
of W||W papers in Cy neighborhoods around W|[W papers, and their greater over-citation of W||W papers. This
homophilic enhancement makes the contrast in the out-of-Cy over-/under-citation behavior of MM vs. W||W teams
(Fig. 4b) even more striking. For citation subsets outside of their C5 neighborhoods, with presumably lower homophilic
enhancement, W||W teams cite near equity, while MM teams maintain a significant citation preference for other MM
papers. Thus, even for papers that are more distant in their co-authorship network, MM papers maintain their
homophilic preference.

S5. SUPPLEMENTARY DISCUSSION
A. The citation diversity statement in other journals

Papers with citation diversity statements (CDSs) have now been published in at least 33 different journals. These
include discipline general journals such as Proceedings of the National Academy of Sciences, Science Advances, Nature
Communications, and Scientific Reports; physics journals (New Journal of Physics), discipline specific journals in the
Nature family (e.g., Nature Machine Intelligence, Nature Biomedical Engineering, Nature Reviews Neuroscience, Na-
ture Neuroscience, Communications Biology); and other discipline specific journals especially in the biological sciences:
ACS Catalysis, Annals of the International Communication Association, Annual Review of Vision Science, Biological
Psychiatry, Brain and Language, Cerebral Cortex, Current Opinion in Behavioral Sciences, Current Opinion in Neu-
robiology, Developmental Cognitive Neuroscience, Developmental Psychobiology, Handbook of the Mathematics of the
Arts and Sciences, Human Brain Mapping, Journal of Neural Engineering, Journal of Neuroscience, Journal of Tissue
Engineering, Journal of Vision, Network Neuroscience, Neuroimage, Neuropsychopharmacology, The Gerontologist,
Translational Psychiatry, Trends in Cognitive Sciences, and Visual Cognition.
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1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Appl Optics 934 860 1201 1054 903 809 777 901 698 781 849 1058 982 980

Nat Photonics 0 0 0 0 0 0 0 0 0 0 0 0 56 74

Opt Express 0 0 57 128 91 94 164 198 437 764 1231 1408 1960 2322

Opt Lett 848 674 590 607 585 556 580 622 728 836 985 1066 1146 1006

Phys Rev A 1012 1264 1254 1276 1308 1381 1527 1828 1594 1700 2039 2088 2259 2502

Phys Rev B 3484 4708 4462 4383 4591 4754 4722 5473 4694 4964 4350 1904 5744 5784

Adv Mater 130 193 203 268 285 367 374 402 420 414 581 565 734 773

Phys Chem Chem Phys 0 0 0 0 745 775 740 764 723 677 462 577 591 755
Adv Funct Mater 0 0 0 0 0 0 64 104 130 148 255 279 461 422
Nat Mater 0 0 0 0 0 0 0 36 119 132 139 139 133 129

Nat Phys 0 0 0 0 0 0 0 0 0 0 26 114 132 147

Phys Rev Lett 2428 2684 2678 3048 2854 3046 2994 2962 2962 3575 3693 3760 3546 3907

Phys Rev X 0 0 0 0 0 0 0 0 0 0 0 0 0 0

New J Phys 0 0 0 2 21 32 24 101 160 203 258 331 452 682

Rev Mod Phys 26 27 29 35 97 29 32 32 38 29 30 32 33 36
Phys Rev D 1267 1488 1627 1728 1792 2022 1955 2274 1963 2277 2246 2372 2267 2862
Astrophys J 2095 2124 2221 2205 2196 2362 2516 2299 2435 2473 2595 2790 2796 2129

Mon Not R Astron Soc 670 716 751 884 859 897 1010 1050 1139 1222 1316 1553 1490 1652
Astron Astrophys 1012 1258 1344 1320 1208 1412 1814 1821 1936 1870 1879 1935 1978 1789

J High Energy Phys 0 0 0 220 353 532 606 732 804 883 857 1024 1247 1281
ACS Nano 0 0 0 0 0 0 0 0 0 0 0 0 53 296

Appl Phys Lett 2418 2560 2366 2351 2591 2638 2749 3148 3257 3730 4414 6152 5817 5450
ACS App Mater Inter 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Nano Lett 0 0 0 0 0 0 151 294 347 459 490 555 689 818
Nanoscale 0 0 0 0 0 0 0 0 0 0 0 0 0 0

J Nucl Mater 142 188 144 136 178 201 162 160 143 192 200 233 77 359

Nucl Fusion 95 112 130 118 110 101 177 138 161 146 189 90 200 100

Nucl Instr A 670 704 610 561 654 484 416 756 448 500 684 538 555 582

Phys Rev C 645 791 774 867 864 832 797 926 813 881 852 861 934 904

Phys Lett B 1569 1654 1546 1744 1430 1375 1335 1155 968 1035 955 999 839 930
Biophys J 532 618 571 588 605 582 578 615 734 747 799 906 860 1040

J Comput Phys 204 236 233 229 228 229 265 239 276 306 308 391 522 413

J Fluid Mech 389 379 370 334 340 321 388 398 379 377 400 486 498 450

Phys Rev E 1240 1683 1872 1930 1888 2033 2325 2638 2273 2282 2525 2330 2255 2361

Soft Matter 0 0 0 0 0 0 0 0 0 0 46 109 171 296

SUM 21810 24921

25033 26016 26776 27864 29242 32066 30779 33603 35653 36645 41477 43231
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TABLE S1. The number of papers contained in our data set, grouped by journal and year. Row and column sums are shown
to summarize. The table is continued on the following page for the years 2009-2020.



2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 SUM

Appl Optics 913 995 1058 1185 1187 1311 1548 1426 1532 1520 1414 910 27786

Nat Photonics 82 105 9 120 139 130 113 121 109 103 115 71 1434

Opt Express 2548 2945 2983 3173 3288 3335 3321 2907 3061 3063 3303 1929 44710

Opt Lett 1309 1408 1605 1755 1618 1779 1478 1465 1327 1525 1514 1232 28844

Phys Rev A 2536 2858 2722 2759 2785 2660 2545 2729 2644 2619 2476 1020 53385

Phys Rev B 5676 6047 6136 5647 4774 4813 4892 5376 5396 5099 5025 2182 125080

Adv Mater 665 777 789 867 872 967 988 1152 1349 1504 1304 593 17536

Phys Chem Chem Phys 1247 1712 2314 1804 2265 2878 3433 3500 3304 3015 2617 1147 36045
Adv Funct Mater 442 481 533 569 636 813 770 873 806 1369 1382 805 11342
Nat Mater 134 137 134 141 151 153 169 172 162 146 162 80 2568

Nat Phys 146 158 163 137 122 131 153 177 187 188 190 84 2255

Phys Rev Lett 3414 3105 3246 3787 3557 2787 2502 2345 2492 2782 2644 1215 78013

Phys Rev X 0 0 38 70 92 216 173 198 220 277 235 121 1640

New J Phys 806 812 733 87 915 819 854 748 576 674 642 217 10919

Rev Mod Phys 46 73 40 45 45 34 38 41 40 41 38 10 996
Phys Rev D 2813 2932 2988 3333 3230 3468 3373 3507 3376 3535 3677 1669 66041
Astrophys J 2796 2501 2473 3075 2889 2787 3008 3006 3075 2969 3162 2044 67021

Mon Not R Astron Soc 1774 1970 2398 2616 2686 2851 3097 3209 3486 3850 4001 2434 49581
Astron Astrophys 1786 1917 1939 1892 1807 1737 1778 1831 1782 1889 2017 1260 44211

J High Energy Phys 1270 1416 1651 1869 1948 2008 2172 2128 1950 2138 2191 898 30178
ACS Nano 497 902 1141 1191 1178 1328 1268 1250 1325 1290 1379 834 13932

Appl Phys Lett 4675 4456 4419 4977 5362 5041 3436 3044 2763 2286 1898 1398 93396
ACS App Mater Inter 400 516 665 952 1778 2761 3349 4055 4862 4889 5182 3879 33288
Nano Lett 804 855 955 1078 996 1103 1260 1169 1136 1105 1160 508 15932
Nanoscale 46 360 653 1015 1546 1840 2259 2174 2084 2441 2343 1667 18428

J Nucl Mater 318 338 404 416 638 633 679 548 552 699 553 403 8696

Nucl Fusion 277 77 318 187 326 193 335 204 526 400 458 179 5347

Nucl Instr A 941 555 1027 625 741 756 737 997 644 799 1037 618 17639

Phys Rev C 1048 1013 1080 1120 1101 1081 1069 1057 1041 1015 989 359 23714

Phys Lett B 928 769 1010 869 778 817 825 905 898 867 836 257 27293
Biophys J 832 825 696 601 562 577 541 515 508 496 415 340 16683

J Comput Phys 483 494 468 425 629 675 696 713 718 647 667 531 11225

J Fluid Mech 450 524 565 557 684 687 670 740 814 852 1021 790 13863

Phys Rev E 2456 2310 2506 2459 2503 2393 2467 2316 2263 2095 2027 836 56266

Soft Matter 590 710 1353 1358 1200 966 943 967 907 965 958 450 11989

SUM 45148 47053 51299 53531 55028 56528

56939 57565 57915 59152 59032 32970 1067276
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Estimate Std. Error p-value

as.factor(journal)acs nano -0.10985  0.02527 1.38E-05 ***
as.factor(journal)advanced functional materials -0.09629  0.02811 6.12E-04 ***
as.factor(journal)advanced materials -0.27828  0.02608 <2E-16 ***
as.factor(journal)applied optics -0.63087  0.02233 <2E-16 ***
as.factor(journal)applied physics letters -0.51038  0.01828 <2E-16 ***
as.factor(journal)astronomy & astrophysics 0.39037  0.01986 <2E-16 ***
as.factor(journal)astrophysical journal 0.08596  0.01777 1.31E-06 ***
as.factor(journal)biophysical journal -0.08018  0.02342 6.18E-04 ***
as.factor(journal)journal of computational physics -0.87401  0.03420 <2E-16 ***
as.factor(journal)journal of fluid mechanics -0.84101  0.03329 <2E-16 ***
as.factor(journal)journal of high energy physics -0.71408  0.02348 <2E-16 ***
as.factor(journal)journal of nuclear materials -0.48532  0.03824 <2E-16 ***
as.factor(journal)monthly notices of the royal astronomical society 0.15656  0.01862 <2E-16 ***
as.factor(journal)nano letters -0.27602  0.02469 <2E-16 ***
as.factor(journal)nanoscale 0.05094  0.02351  3.02E-02 *
as.factor(journal)nature materials -0.54199  0.05425 <2E-16 ***
as.factor(journal)nature photonics -0.89993  0.08120 <2E-16 ***
as.factor(journal)nature physics -0.84656  0.06666 <2E-16 ***
as.factor(journal)new journal of physics -0.52994  0.03292 <2E-16 ***
as.factor(journal)nuclear fusion -1.00783  0.08267 <2E-16 ***
as.factor(journal)nuclear instruments & methods in physics research section a -0.63845  0.03422 <2E-16 ***
as.factor(journal)optics express -0.59868  0.02021 <2E-16 ***
as.factor(journal)optics letters -0.71860  0.02302 <2E-16 ***
as.factor(journal)physical chemistry chemical physics -0.11128  0.01915 6.25E-09 ***
as.factor(journal)physical review a -0.53199  0.02054 <2E-16 ***
as.factor(journal)physical review b -0.54022  0.017564 <2E-16 ***
as.factor(journal)physical review ¢ -0.09881 0.02947 8.00E-04 ***
as.factor(journal)physical review d -0.51881  0.01955 <2E-16 ***
as.factor(journal)physical review e -0.55850  0.01999 <2E-16 ***
as.factor(journal)physical review letters -0.72780  0.01973 <2E-16 ***
as.factor(journal)physical review x -0.87640  0.07716 <2E-16 ***
as.factor(journal)physics letters b -0.57424  0.02823 <2E-16 ***
as.factor(journal)reviews of modern physics -0.94860  0.12025 3.05E-15 ***
as.factor(journal)soft matter 0.15263  0.02556 2.36E-09 ***
as.factor(review) TRUE  0.08692  0.03100 5.05E-03 **
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TABLE S2. Coefficients for linear terms in the GAM, errors of those terms, and p-values for the null hypothesis that each

linear term is zero.

edf p-value

s(month_from_base) 7.219 <2E-16 ***
s(masked_seniority) 8.141 <2E-16 ***
s(log-teamsize) 8.984 <2E-16 ***

TABLE S3. Effective degrees of freedom of all smoothed terms in the GAM, and p-values for the null hypothesis that each

smooth term is zero.
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FIG. S1. GAM-predicted author gender categories correlate with observed author gender categories. (a) GAM-
predicted probabilities that papers are written by MM teams, shown as box plots for all papers actually written by MM teams
and all papers actually written by W||W teams. (b) GAM-predicted probabilities that papers are written by W||W teams,
shown as box plots for all papers actually written by MM teams and all papers actually written by W||W teams. In both
panels, outliers are drawn individually when they exist outside 1.5 times the inter-quartile range of the distribution.
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FIG. S2. GAM-predicted variation in author gender category as a function of paper characteristics. Panels show
partial effect plots (left) and actual fractions of papers written by MM and W||W teams (right) for all paper characteristics
included in the GAM. The paper characteristics are (a) publication month from base, or number of months (divided by 12 such
that axis labels are in units of years) from the earliest publication date in the data set, (b) publishing journal, (c) seniority,
or first and last authors’ combined number of papers in the dataset, (d) log of team size, or total number of authors, and (e)
categorization as non-review or review article. Partial effect plots show the component effect of each paper characteristic on
the overall prediction that papers are written by W||W teams with respect to MM teams. Error bars show the 95% confidence
interval for each effect. Journals are indexed by 1. ACS App Mater Interfaces, 2. ACS Nano, 3. Adv Funct Mater, 4. Adv
Mater, 5. Appl Optics, 6. Appl Phys Lett, 7. Astron Astrophys, 8. Astrophys J, 9. Biophys J, 10. J Comput Phys, 11. J
Fluid Mech , 12. J High Energy Phys, 13. J Nucl Mater, 14. Mon Not R Astron Soc, 15. Nano Lett, 16. Nanoscale, 17. Nat
Mater, 18. Nat Photonics, 19. Nat Phys, 20. New J Phys, 21. Nucl Fusion, 22. Nucl Instrum Methods Phys Res A, 23. Opt
Express, 24. Opt Lett, 25. Phys Chem Chem Phys, 26. Phys Rev A, 27. Phys Rev B, 28. Phys Rev C, 29. Phys Rev D, 30.
Phys Rev E, 31. Phys Rev Lett, 32. Phys Rev X, 33. Phys Lett B, 34. Rev Mod Phys, 35. Soft Matter.
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FIG. S3. Directed citation network with initial subfield boundaries. Each matrix element J;; is colored according to
the fraction of citations given by papers in citer journal ¢ to papers in cited journal j, as indicated by the color bar. Details
regarding the calculation of J;; can be found in the supplementary text. Black lines mark initial subfield boundaries delineated
according to pre-defined journal categories culled from the breakdown of the Physical Review family of journals and Web of
Science journal categories.
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FIG. S4. Citation network communities. Each matrix element J;; is colored according to the fraction of citations given
by papers in citer journal ¢ to papers in cited journal j, as indicated by the color bar. Journals have been grouped into
communities, separated by black lines, that maximize the citation network modularity @ defined in the supplementary text.



23

1.0
nature physics
physical review letters
physical review x
new journal of physics
reviews of modern physics 0.8

physical review b

advanced materials

physical chemistry chemical physics
advanced functional materials
nature materials

physical review d

journal of high energy physics
physics letters b

astrophysical journal

mnras

astronomy & astrophysics
applied optics

nature photonics

optics express

optics letters

physical review a

acs nano

applied physics letters

acs applied materials & interfaces
nano letters

nanoscale

journal of nuclear materials
nuclear fusion

nucl instr meth a

physical review c

biophysical journal

journal of computational physics
journal of fluid mechanics
physical review e

soft matter
n n xunumowumuwuwo wnmag M mvuumummoowmunmwmaowwec ocuUZF v oS
—_ —_—— © _ = @©
U509 .5 0am0 nEClo00 c58nmoOczpedlzy
283028585 5 0BE LSR8 E259585253 8
E8S22S 82882 23EL0838s 8t 8822253228 <¢
S_ voogmcommmp &g — Q—UOQJ_QJS_GJ_C‘VLEG)'_‘Q-UQJ
W3S c S E—EES>—T P0S,0-clESEEBESEEG=0=&
V—0 £ — © - n s=aoung_"L2ccc oE=080®ec="05
528995 ® —0wm28L £33 ,98T wLet.luwLgER
S-S — 0 ©po VL (] Q02 how=18 S 2 L e b4
o Vool o S VgH 9 © agcC= [¥] > C © SELVwog U
clGconuvESSnc 22> S 20% < n Q2T >S5 =%
cZ>Xc23caelo2IGZE Ww®so 3 ol PR RS
T3 ERGcE 02 Sa © Z © ] Scal&s 2
galya>vPcag®e g = & §F E Eag3zss
‘0 > kel = + = Qo
2 =3 NE‘E = 0 o oo ‘G E5
2 [T = © c o 5 ®©
S c el ‘5 o o € o o<
(] [0} fud =
= =3k} = 2 kel c = 3
o oc 2 @ Q 5 °9
= S 8 = o 9 S
T3 o 2 S
T L2 ° 5
@ 0 L
> ©
<
o

FIG. S5. Final subfield boundaries. Each matrix element J;; is colored according to the fraction of citations given by
papers in citer journal ¢ to papers in cited journal j, as indicated by the color bar. Subfields are identical to those defined in
Fig. S3, with two exceptions: (i) the high energy physics and the astronomy and astrophysics journals have been split into
separate subfields, and (ii) Physics Letters B has been incorporated into the high energy physics subfield, and removed from
the nuclear physics subfield.
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FIG. S6. High energy physics papers contain alphabetical author lists. (a) Fraction of all multiple-author papers in
each subfield whose first and last authors are in alphabetical order. (b) Fraction of all multiple-author papers in high energy
physics whose first and last authors are in alphabetical order, grouped by publication year. (c) Fraction of all multiple-author
papers in high energy physics whose first and last authors are in alphabetical order, grouped by author gender category. Papers
of unassigned author gender category are shown for completeness. In all panels, error bars represent the 95% CI of each fraction
and are calculated from 500 bootstrap resampling iterations.
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bias that is more in favor of other MM papers, and less in favor of W||W papers, than authors of W||W papers.
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FIG. S8. Observed and expected citation behavior over time grouped according to citer. (a) Observed and expected
citation proportions given to MM papers over time. (b) Observed and expected citation proportions given to W||W papers
over time. Each panel contains two pairs of trends, colored according to the author gender category of the citing team: MM
(red) or W||W (blue). Each pair of trends shows the observed yearly proportion of citations given as a fraction of the total
number given to either author gender category (solid line), and the equivalent expected yearly proportion according to our
paper characteristics model (dotted line). Error bars represent the 95% CI of each proportion, calculated from 500 bootstrap
resampling iterations.
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FIG. S9. Citation behavior over time of individual journals. (a) Over/under-citation of MM papers by all citing
papers in each journal over time. (b) Over/under-citation of W||W papers by all citing papers in each journal over time. In
both panels, the reported over-/under-citation values utilize the reference lists of all relevant citing papers, including those of
unknown author gender, to increase statistical power. Gray squares occur when journals are not published in any particular
year. Up or down arrows next to each journal’s citation behavior time series indicate if the relevant over/under-citation trend
represents a significant increase or decrease over time, with “significance” determined by a p-value less than 0.05 for a linear
fit to each time series.
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FIG. S10. Citation behavior over time grouped according to citer and subfield. (a) Citation behavior over time of
MM citer papers in each subfield. (b) Citation behavior over time of W||W citer papers in each subfield. In all panels, solid
lines indicate time-varying over/under-citation of MM papers, and dashed lines indicate time-varying over/under-citation of
W||W papers. Error bars for each marker represent the 95% CI of each over-/under-citation calculation and were found via 500
bootstrap resampling iterations. Note that MM citers and W||W citers within the same subfield often show markedly different
citation behavior over time, with W||W citers usually displaying more equitable citation behavior.
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FIG. S11. Fraction of reference lists defined as “familiar”. (a) Histogram of the fraction of each reference list defined as
“familiar” according to whether each cited paper belongs to the same subfield as the citing paper. (b) Histogram of the fraction
of each reference list defined as “familiar” according to whether the cited papers share at least one co-author with the citing
paper. In both panels, all papers published between 2009 and 2020 with cleaned reference lists of length > 0 are represented.
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FIG. S12. Citation behavior varies according to subfield proxy for familiarity with cited work, with subfields
defined alternately via citation network clustering. The familiarity proxy is defined as whether the publishing journals
of cited and citing papers fall within the same subfield, with subfields defined according to the citation network clustering
shown in Fig. S4. Markers show the citation behavior of (black) all papers written between 2009 and 2020, including those
of unknown author gender, (red) the subset identified as MM-authored, and (blue) the subset identified as W||/W-authored.
Arrows point from over-/under-citation when considering only “familiar” citations to over-/under-citation when considering
only “unfamiliar” citations. Error bars representing the 95% CI of each over/under-citation calculation were found via 500
bootstrap resampling iterations.
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FIG. S13. Homophilic enhancement exists in co-authorship networks of MM and W||W papers over time. Box
plots show man-author overrepresentation (MA) in the co-authorship networks surrounding MM (red) and W||W (blue) papers
aggregated over all years between 2009 and 2020. These box plots remain fairly stable over time, with higher values of MA
generally in co-authorship networks surrounding MM papers, and lower values of MA generally in co-authorship networks
surrounding W||W papers. The effect is one of homophilic enhancement in each set of co-authorship networks. In all panels,
outliers are not shown. All non-review papers published between 2009 and 2020 with cleaned reference lists of length > 0 are
represented here. See the main text Methods for details regarding calculation of man-author overrepresentation.
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FIG. S14. Journals with higher proportions of W||W papers published between 2009 and 2020 generally exhibit
lower MM over/under-citation. Each marker represents a journal; error bars representing the 95% CI of each over/under-
citation value were found via 500 bootstrap resampling iterations. Proportions of W||W papers are reported with respect to
total MM and W||W papers in each journal, and only those with cleaned reference lists of length > 0 published between 2009
and 2020 are represented here.
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FIG. S15. Citation bias is correlated with reference list length. (a) Papers with longer reference lists tend to exhibit
lower MM over/under-citation. (b) Papers with longer reference lists tend to exhibit higher W||W over/under-citation. Each
data point shows citation bias aggregated over paper subsets of maximum size 100 at each reference list length. All non-review
papers published between 2009 and 2020 with cleaned reference lists of length > 0 are represented here.
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FIG. S16. W||W citing papers contain longer reference lists. Each panel shows probability density distributions of
reference list length for MM non-review papers (red) and W||W non-review papers (blue) published between 2009 and 2020
with “cleaned” reference lists of length > 0. Cleaned reference lists, as noted in the main text and used by default for all
other analyses, consist only of references that are (i) published in the journals and year-range considered in this paper, (ii)
not self-citations, and (iii) whose author gender category is identified. Panel (a) shows lengths of cleaned reference lists of
all papers, and panel (b) shows lengths of total (non-“cleaned”) reference lists of all papers, to demonstrate that the longer
reference list length effect for W||W papers is not due to the cleaning process. Average reference list length values are indicated
in each panel legend, showing that cleaned W||W reference lists contain about one more reference, on average, than cleaned
MM reference lists; and total W||W reference lists contain about four more references, on average, than total MM reference

lists.
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FIG. S17. Reference list length increases over time. (a) Box plots of “cleaned” reference list length aggregated over all
years between 2009 and 2020. (b) Box plots of total (non-“cleaned”) reference list length aggregated over all years between
2009 and 2020. (c) Box plots of the fraction of each total reference list that remains in its cleaned version, aggregated over
all years between 2009 and 2020. These box plots remain fairly stable over time, indicating that the cleaning process does not
have egregious time-varying effects on reference lists. In all panels, outliers are not shown. All non-review papers published
between 2009 and 2020 with cleaned reference lists of length > 0 are represented here.
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FIG. S18. Slope of linear fits of over/under-citation with reference list length. (a) Slopes of lines fit via ordinary
least-squares to MM over/under-citation as a function of reference list length. (b) Slopes of lines fit via ordinary least-squares to
WI||W over/under-citation as a function of reference list length. Each fit considers only citing papers within a single publishing
year that are authored by MM teams (red) or W||W teams (blue). Fits are performed on data points that indicate aggregated
citation bias across reference lists at each reference list length. Aggregation takes place over paper subsets of maximum size 10
at each reference list length, and only papers with reference lists containing 20% or more within-database and author-gender-
categorized citations are fit. Error bars represent the 95% CI on the fitted slopes. Dotted lines are averages taken across year.
Consistent negative slopes of MM over/under-citation with reference list length over time, and consistent positive slopes of
WI||W over/under-citation with reference list length over time, indicate that longer reference lists display less citation bias.
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FIG. S19. Coeflicient of determination of linear fits of over /under-citation with reference list length. (a) Coefficient
of determination, R?, of lines fit via ordinary least-squares to MM over/under-citation as a function of reference list length. (b)
Coefficient of determination, R?, of lines fit via ordinary least-squares to W||W over/under-citation as a function of reference
list length. Each fit considers only citing papers within a single publishing year that are authored by MM teams (red) or W||W
teams (blue). Fits are performed on data points that indicate aggregated citation bias across reference lists at each reference
list length. Aggregation takes place over paper subsets of maximum size 10 at each reference list length, and only papers with
reference lists containing 20% or more within-database and author-gender-categorized citations are fit.
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FIG. S20. Slope of linear fits of over/under-citation with reference list length: Alternate analyses. (a-b) Slopes of
lines fit via ordinary least-squares to (a) MM over /under-citation and (b) W||W over /under-citation as a function of reference list
length, when only papers with reference lists containing 40% or more within-database and author-gender-categorized citations
are fit. (c-d) Slopes of lines fit via ordinary least-squares to (¢) MM over/under-citation and (d) W||W over/under-citation
as a function of reference list length, when all relevant papers are fit. Each fit considers only those citing papers within a
single publishing year that are authored by MM teams (red) or W||W teams (blue). Fits are performed on data points that
indicate aggregated citation bias across reference lists at each reference list length. Aggregation takes place over paper subsets
of maximum size 10 at each reference list length. Error bars represent the 95% CI on the fitted slopes. Dotted lines are averages
taken across year. Trends are qualitatively consistent across panels (a) and (c), and panels (b) and (d), indicating the stability
of this analysis with respect to the paper filtering procedure used.
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FIG. S21. Citation behavior of sub-categories of W||W papers. (a) Over-/under-citation behavior of all sub-categories
of W||W papers, calculated separately for papers written by each sub-category published between 2009 and 2020. For every
sub-category, the over-/under-citation behavior of all papers in the W||W category is shown for comparison, in black solid
and dotted lines (over-/under-citation of MM papers and W||W papers, respectively). (b-f) Over-/under-citation behavior of
all sub-categories of W||W papers over time. Citer sub-categories are specified at the top of each plot. Solid lines indicate
over-/under-citation of MM papers, and dotted lines indicate over-/under-citation of W||W papers. For every sub-category,
the over-/under-citation behavior of all papers in the W||W category is shown for comparison, in black solid and dotted lines
(over-/under-citation of MM papers and W||W papers, respectively). In all panels, error bars representing the 95% CI of each
over-/under-citation calculation were computed via 500 bootstrap resampling iterations. Error bars for the citation behavior
of the larger W||W paper category are not shown for clarity.
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FIG. S22. Effects of self-citation on citation behavior. (a) Overlaid histograms of the number of self-citations in all MM
and W||W papers in the data set. Note that the y-axis begins at 1, and thus bins of frequency 1 are not shown. (b) Over-
/under-citation of MM and W||W papers excluding self-citations (dotted) and including self-citations (colored), calculated for
all citing papers published between 2009 and 2020. (c) Over-/under-citation of MM and W||W papers excluding self-citations
(dotted) and including self-citations (colored), calculated for MM citing papers and W||W citing papers published between
2009 and 2020. In all panels, error bars representing the 95% CI of each over-/under-citation calculation were computed via
500 bootstrap resampling iterations. Error bars for the citation behavior of the larger W||W paper category are not shown for
clarity.
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FIG. S23. Co-authorship neighborhood size and makeup varies according to author gender category. (a) Overlaid
histograms of neighborhood size |C1| for neighborhoods surrounding all MM and W||W papers in the data set. (b) Overlaid
histograms of neighborhood size |Cz| for neighborhoods surrounding all MM and W||W papers in the data set. (c) Overlaid
histograms of the fraction of MM papers in the neighborhood |C;| surrounding all MM and W||W papers in the data set. (d)
Overlaid histograms of the fraction of MM papers in the neighborhood |Cz| surrounding all MM and W||W papers in the data
set. Definitions of C; and Cy are provided in the text, Section S3E. Note that in all panels the y-axis begins at 1, and thus bins
of frequency 1 are not shown.
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FIG. S24. Co-authorship neighborhood size and makeup varies according to author gender category, even
for papers with a limited number of co-authors. (a) Overlaid histograms of neighborhood size |C1| for neighborhoods
surrounding all MM and W||W papers in the data set with author lists of length < 20. (b) Overlaid histograms of neighborhood
size |Cz| for neighborhoods surrounding all MM and W||W papers in the data set with author lists of length < 20. (c) Overlaid
histograms of the fraction of MM papers in the neighborhood |C;| surrounding all MM and W||W papers in the data set with
author lists of length < 20. (d) Overlaid histograms of the fraction of MM papers in the neighborhood |Cz| surrounding all MM
and W||W papers in the data set with author lists of length < 20. Definitions of C; and Ca are provided in the text, Section
S3E. Note that in all panels the y-axis begins at 1, and thus bins of frequency 1 are not shown.





